Patents by Inventor Stephan Heimgartner

Stephan Heimgartner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170139178
    Abstract: According to embodiments of the present invention, an apparatus comprising a beam shaping element (lens) is provided. The apparatus comprises a substrate; a beam shaping element; and an elastic intermediate layer disposed between, and in contact with, the substrate and the beam shaping element, wherein the elastic intermediate layer has a Young's Modulus in a range of 2-600 MPa and a Poisson's ratio in a range of 0.2-0.5. Techniques for reducing thermal distortion of lens are described.
    Type: Application
    Filed: June 9, 2015
    Publication date: May 18, 2017
    Inventors: Markus Rossi, Stephan Heimgartner
  • Patent number: 9634051
    Abstract: Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises —one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; —at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and —one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 25, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Alexander Bietsch, Hartmut Rudmann, Markus Rossi, Simon Gubser
  • Publication number: 20170084663
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: December 2, 2016
    Publication date: March 23, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20170077162
    Abstract: The optical device comprises a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion. The device furthermore comprises non-transparent material applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
    Type: Application
    Filed: November 2, 2016
    Publication date: March 16, 2017
    Applicant: Heptagon Micro Optics Pte. Ltd.
    Inventors: Markus Rossi, Hartmut Rudmann, Stephan Heimgartner, Alexander Bietsch, Robert Lenart
  • Patent number: 9595553
    Abstract: Fabricating optical devices can include mounting a plurality of singulated lens systems over a substrate, adjusting a thickness of the substrate below at least some of the lens systems to provide respective focal length corrections for the lens systems, and subsequently separating the substrate into a plurality of optical modules, each of which includes one of the lens systems mounted over a portion of the substrate. Adjusting a thickness of the substrate can include, for example, micro-machining the substrate to form respective holes below at least some of the lens systems or adding one or more layers below at least some of the lens systems so as to correct for variations in the focal lengths of the lens systems.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 14, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Stephan Heimgartner, Ville Kettunen, Nicola Spring, Alexander Bietsch, Mario Cesana, Hartmut Rudmann, Jukka Alasirnio, Robert Lenart
  • Patent number: 9543354
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: January 10, 2017
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20160349414
    Abstract: Various stacks of arrays of beam shaping elements are described. Each array of beam shaping elements can be formed, for example, as part of a monolithic piece that includes a body portion as well as the beam shaping elements. In some implementations, the monolithic pieces may be formed, for example, as integrally formed molded pieces. The monolithic pieces can include one or more features to facilitate stacking, aligning and/or centering of the arrays with respect to one another.
    Type: Application
    Filed: February 2, 2015
    Publication date: December 1, 2016
    Inventors: Hartmut Rudmann, Markus Rossi, Mario Cesana, Ohad Meitav, Peter Roentgen, Jukka Alasirniö, Stephan Heimgartner, Kai Engelhardt
  • Patent number: 9490287
    Abstract: The optical device comprises a first substrate (SI) comprising at least one optical structure (1) comprising a main portion (2) and a surrounding portion (3) at least partially surrounding said main portion. The device furthermore comprises non-transparent material (5, 5a, 5b) applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: November 8, 2016
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Markus Rossi, Hartmut Rudmann, Stephan Heimgartner, Alexander Bietsch, Robert Lenart
  • Patent number: 9485397
    Abstract: In accordance with the invention, a camera or optical module for a camera is provided, the camera or optical module comprising: —a first substrate with a plurality of first optical devices, —a second substrate with a plurality of second optical devices, —and a spacer between the first substrate and the second substrate, the spacer having a first and a second attachment surface, the first substrate attached to the first attachment surface and the second spacer attached to the second attachment surface, —the spacer having a through hole from the first attachment surface to the second attachment surface so that there is an interior space between the first substrate and the second substrate, the interior space being hermetically closed off, —the first optical devices and the second optical devices being mutually arranged so that light impinging, from an object side, on a first optical device is directed to an assigned second optical device through the interior space, —the camera further comprising a screen device
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: November 1, 2016
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Stephan Heimgartner
  • Publication number: 20160241749
    Abstract: Compact camera module can include auxiliary spacers to facilitate use of dam-and-fill encapsulation techniques. An encapsulant disposed on side edges of the auxiliary spacer can close off a gap between the auxiliary spacer and a support on which an image sensor is mounted so as to substantially seal off an area in which bond wires or other components are located. In some cases, the thickness of a transmissive substrate in the module can be reduced near its periphery to provide more head room for the bond wires, which can result in a smaller overall footprint for the module.
    Type: Application
    Filed: September 17, 2014
    Publication date: August 18, 2016
    Inventors: Jukka Alasimiö, Stephan Heimgartner
  • Publication number: 20160154198
    Abstract: Camera modules include a lens, a lens stack and/or an array of lenses. One or more of the lenses have a non-circular shape, which in some cases can provide greater flexibility in the dimensions of the module and can result in a very small camera module.
    Type: Application
    Filed: July 16, 2014
    Publication date: June 2, 2016
    Inventors: Jukka Alasimio Alasimio, Hartmut Rudmann, Mario Cesana, Stephan Heimgartner
  • Publication number: 20150340265
    Abstract: Techniques are described for holding a wafer or wafer sub-stack to facilitate further processing of the wafer of sub-stack. In some implementations, a wafer or wafer sub-stack is held by a vacuum chuck in a manner that can help reduce bending of the wafer or wafer sub-stack.
    Type: Application
    Filed: June 28, 2013
    Publication date: November 26, 2015
    Inventors: Hartmut Rudmann, Stephan Heimgartner, John A. Vidallon
  • Publication number: 20150325613
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Application
    Filed: June 18, 2015
    Publication date: November 12, 2015
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Patent number: 9094593
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: July 28, 2015
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20150200221
    Abstract: Then optical device comprises a first member (P) and a second member (O) and, arranged between said first and second members, a third member (S) referred to as spacer. The spacer (S) comprises one or more portions referred to as distancing portions (Sd) in which the spacer has a vertical extension referred to as maximum vertical extension; at least two separate portions referred to as open portions (4) in which no material of the spacer is present; and one or more portions referred to as structured portions (Sb) in which material of the spacer is present and in which the spacer has a vertical extension smaller than said maximum vertical extension. Such optical devices can be used in or as multi-aperture cameras.
    Type: Application
    Filed: March 14, 2013
    Publication date: July 16, 2015
    Inventors: Stephan Heimgartner, Alexander Bietsch, Hartmut Rudmann, Markus Rossi
  • Patent number: 8962079
    Abstract: A method includes the steps of: providing a substrate; providing a tool having, on a replication side, a plurality of replication sections, each replication section defining a surface structure of one of an optical element(s), the tool further including at least one contact spacer portion, the contact spacer portion protruding, on the replication side, further than an outermost feature of the replication sections; aligning the tool with a feature of the substrate and bringing the tool and a first side of the substrate together, with replication material between the tool and the substrate, the contact spacer portion contacting the first side of the substrate, and thereby causing the spacer portion to adhere to the first side of the substrate, thereby producing a substrate-tool-assembly; dislocating the substrate-tool-assembly to a hardening station; causing the replication material to harden at the hardening station; and separating the tool from the substrate with the hardened replication material adhering to
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: February 24, 2015
    Assignee: Heptagon Micro Optics Pte. Ltd.
    Inventors: Hartmut Rudmann, Susanne Westenhofer, Stephan Heimgartner, Diane Morgan, Markus Rossi
  • Publication number: 20150036046
    Abstract: Optoelectronic modules include an optoelectronic device and a transparent cover. A non-transparent material is provided on the sidewalls of the transparent cover, which can help reduce light leakage from the sides of the transparent cover or can help reduce stray light from entering the module. The modules can be fabricated, for example, in wafer-level processes. In some implementations, openings such as trenches are formed in a transparent wafer. The trenches then can be filled with a non-transparent material using, for example, a vacuum injection tool. When a wafer-stack including the trench-filled transparent wafer subsequently is separated into individual modules, the result is that each module can include a transparent cover having sidewalls that are covered by the non-transparent material.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 5, 2015
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20150034975
    Abstract: Various optoelectronic modules are described that include an optoelectronic device (e.g., a light emitting or light detecting element) and a transparent cover. Non-transparent material is provided on the sidewalls of the transparent cover, which, in some implementations, can help reduce light leakage from the sides of the transparent cover or can help prevent stray light from entering the module. Fabrication techniques for making the modules also are described.
    Type: Application
    Filed: July 24, 2014
    Publication date: February 5, 2015
    Inventors: Hartmut Rudmann, Simon Gubser, Susanne Westenhöfer, Stephan Heimgartner, Jens Geiger, Sonja Hanselmann, Christoph Friese, Xu Yi, Thng Chong Kim, John A. Vidallon, Ji Wang, Qi Chuan Yu, Kam Wah Leong
  • Publication number: 20140339664
    Abstract: The optical device comprises a first substrate (SI) comprising at least one optical structure (1) comprising a main portion (2) and a surrounding portion (3) at least partially surrounding said main portion. The device furthermore comprises non-transparent material (5, 5a, 5b) applied onto said surrounding portion. The opto-electronic module comprises a plurality of these optical devices comprised in said first substrate. The method for manufacturing an optical device comprises the steps of a) providing a first substrate comprising at least one optical structure comprising a main portion and a surrounding portion at least partially surrounding said main portion; and b) applying a non-transparent material onto at least said surrounding portion. Said non-transparent material is present on at least said surrounding portion still in the finished optical device.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 20, 2014
    Applicant: Heptagon Micro Optics Pte. Ltd
    Inventors: Markus Rossi, Hartmut Rudmann, Stephan Heimgartner, Alexander Bietsch, Robert Lenart
  • Publication number: 20140307081
    Abstract: The device (50) comprises an optics member (60) and a spacer member (70), said optics member comprising N?2 sets of passive optical components (65) comprising one or more passive optical components each. The spacer member (70) comprises N light channels (77), each of said N light channels being associated with one of said N sets of passive optical components. All of said N light channels (77) have an at least substantially identical geometrical length (g), and an optical path length of a first of said N light channels is different from an optical path length of at least one second of said N light channels. Methods for manufacturing such devices are described, too. The invention can allow to mass produce high-precision devices (50) at a high yield.
    Type: Application
    Filed: August 24, 2012
    Publication date: October 16, 2014
    Applicant: HEPTAGON MICRO OPTICS PTE. LTD.
    Inventors: Hartmut Rudmann, Matthias Maluck, Alexander Bietsch, Peter Roentgen, Stephan Heimgartner