Patents by Inventor Stephan Kudelka

Stephan Kudelka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7666752
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 23, 2010
    Assignee: Qimonda AG
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Publication number: 20090321805
    Abstract: One embodiment relates to an integrated circuit that includes a conductive line that is arranged in a groove in a semiconductor body. An insulating material is disposed over the conductive line. This insulating material includes a first insulating layer comprising a horizontal portion, and a second insulating layer that is disposed over the first insulating layer. Other methods, devices, and systems are also disclosed.
    Type: Application
    Filed: June 30, 2008
    Publication date: December 31, 2009
    Applicant: Qimonda AG
    Inventors: Johannes von Kluge, Arnd Scholz, Joerg Radecker, Matthias Patz, Stephan Kudelka, Alejandro Avellan
  • Patent number: 7531418
    Abstract: In a method for producing a conductive layer a substrate is provided. On the substrate, a layer includes at least two different metal nitrides. In one embodiment, on a surface of the substrate a first metal nitride layer is deposited, followed by a second metal nitride layer formed thereon. A third metal layer is then deposited on a surface of the second metal nitride layer.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: May 12, 2009
    Assignee: Qimonda AG
    Inventors: Bernd Hintze, Stephan Kudelka, Jonas Sundqvist
  • Patent number: 7413951
    Abstract: A method produces stacked capacitors for dynamic memory cells, in which a number of trenches (48) are formed in the masking layer (40), each trench (48) being arranged above a respective contact plug (26) and extending from the top (42) of the masking layer (40) to the contact plugs (26). A conductive layer (50) covers the side walls (49) of the trenches (48) and the contact plugs (26) in order to form a first electrode (60) of a stacked capacitor (12). In an upper region (63), which is remote from the contact stack (26), the conductive layer (50) is replaced by an insulating layer, so that it is not possible for a short circuit to arise in the event of any adhesion between adjacent electrodes.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: August 19, 2008
    Assignee: Qimonda AG
    Inventors: Stephan Kudelka, Peter Moll, Stefan Jakschik, Odo Wunnicke
  • Publication number: 20080182427
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal oxide. In an initial step, a substrate is provided. In a further step, a first precursor comprising a transition metal containing compound, and a second precursor predominantly comprising at least one of water vapor, ozone, oxygen, or oxygen plasma are sequentially applied for depositing above the substrate a layer of a transition metal containing material. In another step, a third precursor comprising a dopant containing compound, and a fourth precursor predominantly comprising at least one of water vapor, ozone, oxygen, or oxygen plasma are sequentially applied for depositing above the substrate a layer of a dopant containing material. The transition metal comprises at least one of zirconium and hafnium. The dopant comprises at least one of barium, strontium, calcium, niobium, bismuth, magnesium, and cerium.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 31, 2008
    Inventors: Lars Oberbeck, Uwe Schroeder, Johannes Heitmann, Stephan Kudelka, Tim Boescke, Jonas Sundqvist
  • Publication number: 20080176375
    Abstract: The present invention relates to a deposition of a dielectric layer. On a substrate having a structured area a crystallization seed layer for a dielectric layer is deposited via an atomic layer deposition technique employing a first and a second precursor on the structured area of the substrate. The first pre-cursor is a compound having the constitutional formula M1(R1Cp)x(R2)4-x, wherein M1 is one of hafnium and zirconium, Cp is cyclopentadienyl, R1 is independently selected of methyl, ethyl and alkyl, R2 is independently selected of hydrogen, methyl, ethyl, alkyl and alkoxyl, and x is one or two. The dielectric layer is deposited on the crystallization seed layer via an atomic layer deposition technique employing a third and a forth precursor wherein the third pre-cursor being a compound having the constitutional formula M2 R3 R4 R5 R6, wherein M2 is one of hafnium or zirconium and R3, R4, R5, and R6 are independently selected of alkyl amines.
    Type: Application
    Filed: January 8, 2008
    Publication date: July 24, 2008
    Applicant: QIMONDA AG
    Inventors: Elke Erben, Stephan Kudelka, Alfred Kersch, Angela Link, Matthias Patz, Jonas Sundqvist
  • Publication number: 20080173917
    Abstract: The invention relates to a deposition method performing the following steps. A substrate is provided which is structured to comprise a first surface and a second surface, which differ in at least one of geometric orientation and vertical distance to a principle surface of the substrate. An etchable layer is deposited on the first surface via an atomic layer deposition technique the deposition technique using a first precursor supplied in an amount sufficient to cover at least parts of the first surface and insufficient to cover the second surface, the first precursor being supplied from a direction to pass the first surface before the second surface. A dielectric layer of at least one of a transition metal oxide and a transition metal nitride is deposited on at least the second surface via an atomic layer deposition technique using a second precursor.
    Type: Application
    Filed: January 19, 2007
    Publication date: July 24, 2008
    Inventors: Matthias Patz, Alexey Ivanov, Stephan Kudelka
  • Publication number: 20080173919
    Abstract: The present invention relates to a method for depositing a dielectric material comprising a transition metal compound. After providing a substrate, a first pre-cursor comprising a transition metal compound and a second pre-cursor predominantly comprising at least one of water vapour, ammonia and hydrazine are successively applied on the substrate for forming a first layer of transition metal containing material. In a next step the first pre-cursor and a third pre-cursor comprising at least one of ozone and oxygen are successively applied on the first layer for forming a second layer of the transition metal containing material.
    Type: Application
    Filed: January 19, 2007
    Publication date: July 24, 2008
    Inventors: Stephan Kudelka, Lars Oberbeck, Uwe Schroeder, Tim Boescke, Johannes Heitmann, Annette Saenger, Joerg Schumann, Elke Erben
  • Patent number: 7402860
    Abstract: The present invention relates to a method of fabricating a capacitor in a semiconductor substrate. The capacitor is fabricated such that the capacitor comprises: a trench inside a substrate, the trench having a lower region and an upper region, wherein the trench's diameters in the lower region is larger than in the upper region; a first electrode; a dielectric layer on top of the first electrode; a conductive layer on top of the electric layer, the conductive layer forming a second electrode of the capacitor; and a plug forming a closed cavity inside the lower region.
    Type: Grant
    Filed: July 11, 2005
    Date of Patent: July 22, 2008
    Assignee: Infineon Technologies AG
    Inventors: Christian Kapteyn, Stephan Kudelka, Thomas Hecht
  • Patent number: 7312114
    Abstract: The present invention relates to a manufacturing method for a trench capacitor having an isolation collar which is electrically connected with a substrate on a single side via a buried contact. More specifically, the present invention relates to manufacturing method for a trench capacitor having an isolation collar with a metal conductive fill in the collar region connected to a metal fill in the capacitor region.
    Type: Grant
    Filed: April 27, 2005
    Date of Patent: December 25, 2007
    Assignee: Infineon Technologies AG
    Inventors: Stephan Kudelka, Guenther Aichmayr
  • Publication number: 20070235786
    Abstract: A storage capacitor, particularly for use in a storage cell, exhibits two storage electrodes and a dielectric arranged between the two storage electrodes, an intermediate layer essentially consisting of carbon.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 11, 2007
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Christian Kapteyn, Stephan Kudelka
  • Patent number: 7273790
    Abstract: Fabricating a trench capacitor with an insulation collar in a substrate, which is electrically connected thereto on one side through a buried contact, in particular, for a semiconductor memory cell with a planar selection transistor in the substrate and connected through the buried contact, includes providing a trench using an opening in a hard mask, providing a capacitor dielectric in lower and central trench regions, the collar in central and upper trench regions, and a conductive filling at least as far as the insulation collar topside, completely filling the trench with a filling material, carrying out STI trench fabrication process, removing the filling material and sinking the filling to below the collar topside, forming an insulation region on one side above the collar; uncovering a connection region on a different side above the collar, and forming the buried contact by depositing and etching back a metallic filling.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: September 25, 2007
    Assignee: Infineon Technologies AG
    Inventors: Stephan Kudelka, Martin Popp, Harald Seidl, Annette Sänger
  • Publication number: 20070059893
    Abstract: A method produces stacked capacitors for dynamic memory cells, in which a number of trenches (48) are formed in the masking layer (40), each trench (48) being arranged above a respective contact plug (26) and extending from the top (42) of the masking layer (40) to the contact plugs (26). A conductive layer (50) covers the side walls (49) of the trenches (48) and the contact plugs (26) in order to form a first electrode (60) of a stacked capacitor (12). In an upper region (63), which is remote from the contact stack (26), the conductive layer (50) is replaced by an insulating layer, so that it is not possible for a short circuit to arise in the event of any adhesion between adjacent electrodes.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 15, 2007
    Inventors: Stephan Kudelka, Peter Moll, Stefan Jakschik, Odo Wunnicke
  • Patent number: 7189614
    Abstract: A method for fabricating a trench structure, in particular a trench capacitor with an insulation collar, which is electrically connected to a substrate on one side via a buried contact. Fabrication includes, for example, providing a trench in the substrate using a hard mask with a corresponding mask opening; providing an at least partial trench filling; providing a liner on the resulting structure; carrying out an oblique implantation of impurity ions onto the liner for altering the etching properties of an implanted partial region of the liner; selectively removing the implanted partial region of the liner by a first etching for forming a liner mask from the complimentary partial region of the liner, which partially masks the top side of the trench filling; removing a part of the trench filling by a second etching using the liner mask; and replacing the removed part of the trench filling.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: March 13, 2007
    Assignee: Infineon Technologies AG
    Inventors: Stephan Kudelka, Albrecht Kieslich, Kevin Pears
  • Publication number: 20070007624
    Abstract: The present invention relates to a method of fabricating a capacitor in a semiconductor substrate. The capacitor is fabricated such that the capacitor comprises: a trench inside a substrate, the trench having a lower region and an upper region, wherein the trench's diameters in the lower region is larger than in the upper region; a first electrode; a dielectric layer on top of the first electrode; a conductive layer on top of the electric layer, the conductive layer forming a second electrode of the capacitor; and a plug forming a closed cavity inside the lower region.
    Type: Application
    Filed: July 11, 2005
    Publication date: January 11, 2007
    Inventors: Christian Kapteyn, Stephan Kudelka, Thomas Hecht
  • Patent number: 7157329
    Abstract: A trench capacitor with improved strap is disclosed. The strap is located above the top surface of the capacitor. The top surface of the trench capacitor, which is formed by the top surfaces of the collar and storage plate, is planar. By locating the strap on a planar surface, the divot present in conventional strap processes is avoided. This results in improved strap reliability and device performance.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: January 2, 2007
    Assignee: Infineon Technologies Aktiengesellschaft
    Inventors: Helmut Tews, Jochen Beintner, Stephan Kudelka
  • Patent number: 7157371
    Abstract: A dielectric barrier layer composed of a metal oxide is applied in thin layers with a thickness of less than 20 nanometers in the course of processing semiconductor devices by sequential gas phase deposition or molecular beam epitaxy in molecular individual layers on differently structured base substrates. The method allows, inter alias, effective conductive diffusion barriers to be formed from a dielectric material, an optimization of the layer thickness of the barrier layer, an increase in the temperature budget for subsequent process steps, and a reduction in the effort for removing the temporary barrier layers.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: January 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Thomas Hecht, Uwe Schroeder, Harald Seidl, Martin Gutsche, Stefan Jakschik, Stephan Kudelka, Albert Birner
  • Patent number: 7157328
    Abstract: The surface area of the walls of a trench formed in a substrate is increased. A barrier layer is formed on the walls of the trench such that the barrier layer is thinner near the corners of the trench and is thicker between the corners of the trench. A dopant is introduced into the substrate through the barrier layer to form higher doped regions in the substrate near the corners of the trench and lesser doped regions between the corners of the trench. The barrier layer is removed, and the walls of the trench are etched in a manner that etches the lesser doped regions of the substrate at a higher rate than the higher doped regions of the substrate to widen and lengthen the trench and to form rounded corners at the intersections of the walls of the trench.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: January 2, 2007
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Helmut Horst Tews, Stephan Kudelka, Kenneth T. Settlemyer
  • Patent number: 7157382
    Abstract: The present invention provides a method for expanding a trench in a semiconductor structure. A trench is provided in a semiconductor substrate, hydrogen-terminated silicon surfaces are provided in the trench, anisotropic wet etching of the silicon surfaces in the trench with an alkaline etchant occur, and the trench is rinsed with a proton-containing neutralizing agent for the removal of the alkaline etchant. Between the wet etching step and the rinsing step, an anodic passivation of the etched silicon surfaces in the trench is carried out, in the course of which an etching stop layer is formed on the etched silicon surfaces in the trench.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: January 2, 2007
    Assignee: Infineon Technologies AG
    Inventor: Stephan Kudelka
  • Publication number: 20060246656
    Abstract: The present invention relates to a manufacturing method for a trench capacitor having an isolation collar which is electrically connected with a substrate on a single side via a buried contact, particularly for use in a semiconductor memory cell. More specifically, the present invention relates to a manufacturing method for a trench capacitor having an isolation collar with a metal conductive fill in the collar region connected to a metal fill in the capacitor region.
    Type: Application
    Filed: April 27, 2005
    Publication date: November 2, 2006
    Applicant: Infineon Technologies AG
    Inventors: Stephan Kudelka, Guenther Aichmayr