Patents by Inventor Stephan Kudelka

Stephan Kudelka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040166677
    Abstract: Damage to the rim of a semiconductor wafer caused by etching processes is reduced by forming a rim of photoresist or other material around the outer edge of the wafer that has a thickness such that images projected on the rim are sufficiently out of focus that they do not develop, so that etching takes place only in the interior.
    Type: Application
    Filed: February 24, 2003
    Publication date: August 26, 2004
    Applicants: International Business Machines Corporation, INFINEON
    Inventors: Wolfgang Bergner, Linda Chen, Stephan Kudelka, Franz X. Zach
  • Publication number: 20040164313
    Abstract: A trench capacitor with improved strap is disclosed. The strap is located above the top surface of the capacitor. The top surface of the trench capacitor which is formed by the top surfaces of the collar and storage plate, is planar. By locating the strap on a planar surface, the divot present in conventional strap processes is avoided. This results in improved strap reliability and device performance.
    Type: Application
    Filed: February 20, 2003
    Publication date: August 26, 2004
    Inventors: Helmut Tews, Jochen Beintner, Stephan Kudelka
  • Publication number: 20040152317
    Abstract: Method for increasing the structure density and/or the storage capacitance of structures to be introduced into a semiconductor wafer, the semiconductor wafer having a marking. prescribing a breaking direction and the structures being imaged onto the semiconductor wafer by means of an exposure device and a mask, whose mask layout prescribes the structures. The semiconductor wafer is rotated by 45 degrees in its plane with regard to the mask layout prior to the imaging of the structures and provided with a marking prescribing a new breaking direction parallel to a <100> crystal orientation. The further process steps take place unchanged with respect to nonrotated semiconductor wafers.
    Type: Application
    Filed: November 26, 2003
    Publication date: August 5, 2004
    Inventors: Joern Luetzen, Albert Birner, Stephan Kudelka, Helmut Tews, Rolf Weis
  • Publication number: 20040126961
    Abstract: A method for fabricating a semiconductor trench structure includes forming a trench in a semiconductor substrate and filling it with a filler. A first thermal process having a first maximum temperature cures the filler. Removing the filler from an upper region of the trench as far as a boundary surface defines a collar region. In a second thermal process having a second maximum temperature that is not significantly higher than the first maximum temperature, a liner is deposited on the collar region and the boundary surface. The liner is removed from the boundary surface, thereby exposing the filler. The filler is then removed from a lower region of the trench.
    Type: Application
    Filed: July 30, 2003
    Publication date: July 1, 2004
    Inventors: Albert Birner, Matthias Goldbach, Thomas Hecht, Lars Heineck, Stephan Kudelka, Jorn Lutzen, Dirk Manger, Andreas Orth
  • Publication number: 20040115895
    Abstract: The vertical DRAM capacitor with a buried LOCOS collar characterized by: a self-aligned bottle and gas phase doping; no consumption of silicon at the depth of the buried strap; no reduction of trench diameter; and a nitride layer to protect trench sidewalls during gas phase doping.
    Type: Application
    Filed: July 29, 2003
    Publication date: June 17, 2004
    Inventors: Helmut Tews, Stephan Kudelka, Uwe Schroeder, Rolf Weis
  • Patent number: 6740595
    Abstract: A method for eching a recess in a polysilicon region of a semiconductor device by applying a solution of NH4OH in water to the polysilicon.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: May 25, 2004
    Assignee: Infineon Technologies AG
    Inventors: Stephan Kudelka, Helmut Tews, Alexander Michaelis, Uwe Schroeder, Martin Popp, Kristin Schupke, Daniel Koehler
  • Patent number: 6740555
    Abstract: A method for forming substantially uniformly thick, thermally grown, silicon dioxide material on a silicon body independent of axis. A trench is formed in a surface of the silicon body, such trench having sidewalls disposed in different crystallographic planes, one of such planes being the <100> crystallographic plane and another one of such planes being the <110> plane. A substantially uniform layer of silicon nitride is formed on the sidewalls. The trench, with the substantially uniform layer of silicon nitride, is subjected to a silicon oxidation environment with sidewalls in the <110> plane being oxidized at a higher rate than sidewalls in the <100> plane producing silicon dioxide on the silicon nitride layer having thickness over the <110> plane greater than over the <100> plane.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: May 25, 2004
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Helmut Horst Tews, Alexander Michaelis, Stephan Kudelka, Uwe Schroeder, Raj Jammy, Ulrike Gruening
  • Publication number: 20040087045
    Abstract: An etching signal layer which is formed by a sequential gas phase deposition with a layer thickness of less than 20 nanometers, and which is composed of a metal oxide or of an oxide of rare earths is provided between a substrate, which is located underneath it, and a process layer. The etching signal layer produces an etching signal, which is independent of the stack layer systems that are to be removed, and contains two or more materials that contain silicon, and can be removed quickly and with narrow process tolerances. One substrate surface of the substrate is protected irrespective of the topography. Etching methods based on the etching signal layer can be carried out precisely, and can be used in a variable manner.
    Type: Application
    Filed: September 2, 2003
    Publication date: May 6, 2004
    Inventors: Thomas Hecht, Uwe Schroeder, Harald Seidl, Martin Gutsche, Stefan Jakschik, Stephan Kudelka, Albert Birner
  • Publication number: 20040082166
    Abstract: A dielectric barrier layer composed of a metal oxide is applied in thin layers with a thickness of less than 20 nanometers in the course of processing semiconductor devices by sequential gas phase deposition or molecular beam epitaxy in molecular individual layers on differently structured base substrates. The method allows, inter alias, effective conductive diffusion barriers to be formed from a dielectric material, an optimization of the layer thickness of the barrier layer, an increase in the temperature budget for subsequent process steps, and a reduction in the effort for removing the temporary barrier layers.
    Type: Application
    Filed: September 2, 2003
    Publication date: April 29, 2004
    Inventors: Thomas Hecht, Uwe Schroeder, Harald Seidl, Martin Gutsche, Stefan Jakschik, Stephan Kudelka, Albert Birner
  • Publication number: 20040029343
    Abstract: In a method for forming patterned ceramic layers, a ceramic material is deposited on a substrate and is subsequently densified by heat treatment, for example. In this case, the initially amorphous material is converted into a crystalline or polycrystalline form. In order that the now crystalline material can be removed again from the substrate, imperfections are produced in the ceramic material, for example by ion implantation. As a result, the etching medium can more easily attack the ceramic material, so that the latter can be removed with a higher etching rate. Through inclined implantation, the method can be performed in a self-aligning manner and the ceramic material can be removed on one side, by way of example, in trenches or deep trench capacitors.
    Type: Application
    Filed: April 29, 2003
    Publication date: February 12, 2004
    Inventors: Harald Seidl, Martin Gutsche, Thomas Hecht, Stefan Jakschik, Stephan Kudelka, Uwe Schroder, Matthias Schmeide
  • Patent number: 6677197
    Abstract: In a process for preparing a DT DRAM for sub 100 nm groundrules that normally require the formation of a collar after the bottle formation, the improvement of providing a collar first scheme by forming a high aspect ration PBL SiN barrier, comprising: a) providing a semiconductor structure after SiN node deposition and DT polysilicon fill; b) depositing a poly buffered LOCOS (PBL) Si liner; c) subjecting the PBL liner to oxidation to form a pad oxide and depositing a SiN barrier layer; d) depositing a silicon mask liner; e) subjecting the DT to high directional ion implantation (I/I) using a p-dopant; f) employing a selective wet etch of unimplanted Si with an etch stop on SiN; g) subjecting the product of step f) to a SiN wet etch with an etch stop on the pad oxide; h) affecting a Si liner etch with a stop on the pad oxide; i) oxidizing the PBL Si liner and affecting a barrier SiN strip; j) providing a DT polysilicon fill and performing a poly chemical mechanical polishing.
    Type: Grant
    Filed: December 31, 2001
    Date of Patent: January 13, 2004
    Assignee: Infineon Technologies AG
    Inventors: Stephan Kudelka, Helmut Horst Tews
  • Patent number: 6670235
    Abstract: In a method of forming a DRAM cell in a semiconductor substrate, the improvement of maintaining a substantially full trench opening during trench processing comprising: a) forming a pad nitride on the surface of the substrate and reactive ion etching (RIE) a trench vertically to a first depth; b) depositing a nitride layer in the trench; c) filling the trench with a poly silicon fill; d) recess etching the fill to the collar depth; e) oxidizing to transform the exposed nitride layer into a nitrided oxide collar or depositing an oxide on the layer of nitride; f) reactive ion etching to open the bottom oxide; g) stripping the poly fill trench, and performing a nitride etch selective to oxide; h) expanding the trench horizontally by etching lower trench sidewalls and bottom while masking the upper sidewalls; i) forming a buried plate at the bottom of the trench sidewalls; j) forming the node dielectric in the deep trench to grow a collar oxide that consists of a nitrided oxide and a layer of node nitride; k) fil
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: December 30, 2003
    Assignee: Infineon Technologies AG
    Inventors: Helmut Horst Tews, Stephan Kudelka, Oliver Genz
  • Publication number: 20030194867
    Abstract: A method for etching a recess in a polysilicon region of a semiconductor device by applying a solution of NH4OH in water to the polysilicon.
    Type: Application
    Filed: April 12, 2002
    Publication date: October 16, 2003
    Applicant: Infineon Technologies North America Corp
    Inventors: Stephan Kudelka, Helmut Tews, Alexander Michaelis, Uwe Schroeder, Martin Popp, Kristin Schupke, Daniel Koehler
  • Patent number: 6613642
    Abstract: A method for increasing the surface area of an original surface in a semiconductor device is disclosed. In an exemplary embodiment of the invention, the method includes forming a layered mask upon the original surface, the layered mask including a masking layer thereatop having a varying thickness. An isotropic etch is then applied to the layered mask, which isotropic etch further removes exposed portions of the original surface as the layered mask is removed. Thereby, the isotropic etch enhances the non-uniformity of the masking layer and creates a non-uniformity in planarity of the original surface.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: September 2, 2003
    Assignee: International Business Machines Corporation
    Inventors: Stephen Rahn, Irene McStay, Helmut Horst Tews, Uwe Schroeder, Stephan Kudelka, Rajarao Jammy
  • Patent number: 6605838
    Abstract: A trench capacitor memory cell structure is provided with includes a vertical collar region that suppresses current leakage of an adjacent vertical parasitic transistor that exists between the vertical MOSFET and the underlying trench capacitor. The vertical collar isolation, which has a vertical length of about 0.50 &mgr;m or less, includes a first portion that is present partially outside the trench and a second portion that is present inside the trench. The first portion of the collar oxide is thicker than said second portion oxide thereby reducing parasitic current leakage.
    Type: Grant
    Filed: September 30, 2002
    Date of Patent: August 12, 2003
    Assignees: International Business Machines Corporation, Infineon Technologies North America Corporation
    Inventors: Jack A. Mandelman, Rama Divakaruni, Gerd Fehlauer, Stephan Kudelka, Uwe Schroeder, Helmut H. Tews
  • Patent number: 6605860
    Abstract: A method for forming substantially uniformly thick, thermally grown, silicon dioxide material on a silicon body independent of bon axis. A trench is formed in a surface of the silicon body, such trench having sidewalls disposed in different crystallographic planes, one of such planes being the <100> crystallographic plane and another one of such planes being the <1 10> plane. A substantially uniform layer of silicon nitride is formed on the sidewalls. The trench, with the with substantially uniform layer of silicon nitride, is subjected to a silicon oxidation environment with sidewalls in the <110> plane being oxidized at a higher rate than sidewalls in the <100> plane producing silicon dioxide on the silicon nitride layer having thickness over the <110> plane greater than over the <100> plane.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: August 12, 2003
    Assignees: Infineon Technologies AG, International Business Machines Corporation
    Inventors: Helmut Horst Tews, Alexander Michaelis, Stephan Kudelka, Uwe Schroeder, Raj Jammy, Ulrike Gruening
  • Patent number: 6599798
    Abstract: The vertical DRAM capacitor with a buried LOCOS collar characterized by: a self-aligned bottle and gas phase doping; no consumption of silicon at the depth of the buried strap; no reduction of trench diameter; and a nitride layer to protect trench sidewalls during gas phase doping.
    Type: Grant
    Filed: July 24, 2001
    Date of Patent: July 29, 2003
    Assignee: Infineon Technologies AG
    Inventors: Helmut Tews, Stephan Kudelka, Uwe Schroeder, Rolf Weis
  • Publication number: 20030124805
    Abstract: In a process for preparing a DT DRAM for sub 100 nm groundrules that normally require the formation of a collar after the bottle formation, the improvement of providing a collar first scheme by forming a high aspect ration PBL SiN barrier, comprising:
    Type: Application
    Filed: December 31, 2001
    Publication date: July 3, 2003
    Applicant: Infineon Technologies North America Corp.
    Inventors: Stephan Kudelka, Helmut Horst Tews
  • Publication number: 20030114005
    Abstract: A method for increasing the surface area of an original surface in a semiconductor device is disclosed. In an exemplary embodiment of the invention, the method includes forming a layered mask upon the original surface, the layered mask including a masking layer thereatop having a varying thickness. An isotropic etch is then applied to the layered mask, which isotropic etch further removes exposed portions of the original surface as the layered mask is removed. Thereby, the isotropic etch enhances the non-uniformity of the masking layer and creates a non-uniformity in planarity of the original surface.
    Type: Application
    Filed: December 13, 2001
    Publication date: June 19, 2003
    Applicant: International Business Machines Corporation
    Inventors: Stephen Rahn, Irene McStay, Helmut Horst Tews, Uwe Schroeder, Stephan Kudelka, Rajarao Jammy
  • Patent number: 6573137
    Abstract: A method for clearing an isolation collar from a first interior surface of a deep trench at a location above a storage capacitor while leaving the isolation collar at other surfaces of the deep trench. A barrier material is deposited above a node conductor of the storage capacitor. A layer of silicon is deposited over the barrier material. Dopant ions are implanted at an angle into the layer of deposited silicon within the deep trench, thereby leaving the deposited silicon unimplanted along one side of the deep trench. The unimplanted silicon is etched. The isolation collar is removed in locations previously covered by the unimplanted silicon, leaving the isolation collar in locations covered by the implanted silicon.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: June 3, 2003
    Assignee: International Business Machines Corporation
    Inventors: Ramachandra Divakaruni, Jack A. Mandelman, Wolfgang Bergner, Gary B. Bronner, Ulrike Gruening, Stephan Kudelka, Alexander Michaelis, Larry Nesbit, Carl J. Radens, Till Schloesser, Helmut Tews