Patents by Inventor Stephan Lvovich Logunov

Stephan Lvovich Logunov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200161509
    Abstract: The QD LED module (10) disclosed herein includes a support assembly (40), a circuit board (20), an LED (30) operably supported by the circuit board, wherein the LED emits blue light (36G). The QD LED module also has a QD structure (60) supported by the support assembly and axially spaced apart from the LED surface. The QD structure has an active area (AR) that includes a first region (R1) of QD material and a second region (R2) that has no QD material. A first portion of the blue light passes through the first region and is converted to red light (36R) and green light (36G). A second portion of the blue light passes through the second region. The QD material has a CIE color point that is shifted toward the yellow portion of the color space.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 21, 2020
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, William Allen Wood
  • Patent number: 10640654
    Abstract: A coating composition containing a radiation-curable component, a photoinitiator, and a UV absorber is described. The coating composition may be applied to an optical fiber and cured to form a coating. The UV absorber provides a protective function by inhibiting unintended curing of the coating that may occur upon exposure of the fiber to UV light during fiber processing. The spectral overlap of the photoinitiator and UV absorber is minimized to permit efficient photoinitiation of the curing reaction over one or more wavelengths. Photoinitiation may be excited by an LED source with a peak emission wavelength in the range from 360 nm-410 nm.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: May 5, 2020
    Assignee: Corning Incorporated
    Inventors: Michael Edward DeRosa, Michelle Dawn Fabian, Stephan Lvovich Logunov, James Robert Matthews, Manuela Ocampo
  • Patent number: 10627558
    Abstract: A light-diffusing optical fiber that provides a symmetric intensity distribution of forward and backward scattered light is described. The fiber includes a secondary coating that contains scattering centers. Control of the thickness of the secondary coating and concentration of scattering centers provides control over the distribution of scattered intensity. More symmetric distributions of scattered light intensity are realized by increasing the thickness of the secondary coating and/or the concentration of scattering centers in the secondary coating. Representative scattering centers include oxide nanoparticles.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: April 21, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Kevin Wallace Bennett, Trista Nicole Hesch, Stephan Lvovich Logunov, Manuela Ocampo
  • Publication number: 20200116924
    Abstract: A light-diffusing optical element with efficient coupling to light sources with high numerical aperture. The light-diffusing optical element includes a higher index core surrounded by a lower index cladding. The cladding includes scattering centers that scatter evanescent light entering the cladding from the core. The scattered light exits the element to provide broad-area illumination along the element. Scattering centers include dopants, nanoparticles and/or internal voids. The core may also include scattering centers. The core is glass and the cladding may be glass or a polymer. The element features high numerical aperture and high scattering efficiency.
    Type: Application
    Filed: December 12, 2019
    Publication date: April 16, 2020
    Inventor: Stephan Lvovich Logunov
  • Patent number: 10611668
    Abstract: The present disclosure relates to a process for cutting and separating arbitrary shapes of thin substrates of transparent materials, particularly tailored composite fusion drawn glass sheets, and the disclosure also relates to a glass article prepared by the method. The developed laser method can be tailored for manual separation of the parts from the panel or full laser separation by thermally stressing the desired profile. The self-separation method involves the utilization of an ultra-short pulse laser that can be followed by a CO2 laser (coupled with high pressure air flow) for fully automated separation.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Sasha Marjanovic, Albert Roth Nieber, Garrett Andrew Piech, Kamjula Pattabhirami Reddy, Pushkar Tandon, Sergio Tsuda, Natesan Venkataraman, Robert Stephen Wagner
  • Patent number: 10611667
    Abstract: The embodiments disclosed herein relate to methods, systems, and system components for creating and arranging small (micron and smaller) defects or perforations in transparent materials in a particular manner, and, more particularly, to the arrangement of these defects, each of which has an average crack length, in a predetermined spaced-apart relation (each defect separated from an adjacent defect by a predetermined distance) defining a contour in a transparent material to lower the relative interface fracture toughness for subsequent planned induced separation.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: April 7, 2020
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Albert Roth Nieber, Pushkar Tandon, Sergio Tsuda
  • Publication number: 20200057202
    Abstract: Assemblies, optical connectors, and methods for bonding optical elements to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical element to a substrate includes disposing a film layer on a surface of the substrate, disposing the optical element on a surface of the film layer, and directing a laser beam into the optical element. The method further includes melting, using the diameter laser beam, a material of the substrate to create a bond area between the optical element and the surface of the substrate. The film layer is capable of absorbing a wavelength of the laser beam to melt the material of the substrate at the bond area. The bond area includes laser-melted material of the substrate that bonds the optical element to the substrate.
    Type: Application
    Filed: October 25, 2019
    Publication date: February 20, 2020
    Inventors: Douglas Llewellyn Butler, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, James Scott Sutherland
  • Patent number: 10545293
    Abstract: Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: January 28, 2020
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 10497898
    Abstract: A laser weldable device housing substrate, device housing and related method are provided. The substrate includes a first surface, a second surface opposite the first surface, and a thin inorganic particle layer supported by the first surface. The inorganic particle layer includes a plurality of particles arranged in a layer on the first surface. The particles have an average diameter of less than or equal to 1.0 ?m, and the inorganic particle layer has an average thickness of less than or equal to 5 ?m.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: December 3, 2019
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Theresa Chang, Leonard Charles Dabich, II, Mark Alan Lewis, Stephan Lvovich Logunov, Mark Alejandro Quesada, Wageesha Senaratne, Alexander Mikhailovich Streltsov
  • Patent number: 10457595
    Abstract: A method of forming a sealed device comprising providing a first substrate having a first surface, providing a second substrate adjacent the first substrate, and forming a weld between an interface of the first substrate and the adjacent second substrate, wherein the weld is characterized by ((?tensile stress location)/(?interface laser weld))<<1 or <1 and ?interface laser weld>10 MPa or >1 MPa where ?tensile stress location is the stress present in the first substrate and ?interface laser weld is the stress present at the interface. This method may be used to manufacture a variety of different sealed packages.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: October 29, 2019
    Assignee: Corning Incorporated
    Inventors: Heather Debra Boek, Leonard Charles Dabich, II, David Alan Deneka, Jin Su Kim, Shari Elizabeth Koval, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190310415
    Abstract: A light-diffusing optical element with efficient coupling to light sources with high numerical aperture. The light-diffusing optical element includes a higher index core surrounded by a lower index cladding. The cladding includes scattering centers that scatter evanescent light entering the cladding from the core. The scattered light exits the element to provide broad-area illumination along the element. Scattering centers include dopants, nanoparticles and/or internal voids. The core may also include scattering centers. The core is glass and the cladding may be glass or a polymer. The element features high numerical aperture and high scattering efficiency.
    Type: Application
    Filed: June 6, 2019
    Publication date: October 10, 2019
    Inventor: Stephan Lvovich Logunov
  • Patent number: 10422961
    Abstract: Assemblies, optical connectors, and methods for forming fiber arrays using laser bonded optical fibers are disclosed. In one embodiment, a method of forming a fiber array includes placing an optical fiber on a surface of a substrate, directing a laser beam into the optical fiber disposed on the surface of the substrate, melting, using the laser beam, a material of the substrate to create a first laser bond zone between the optical fiber and the surface of the substrate, applying an adhesive to the optical fiber and the substrate to create an adhesive bond zone between the optical fiber and the surface of the substrate, and cutting the optical fiber and the substrate to create a first section of the fiber array and a second section of the fiber array.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: September 24, 2019
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190271814
    Abstract: Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
    Type: Application
    Filed: May 13, 2019
    Publication date: September 5, 2019
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Douglas Llewellyn Butler, James Scott Sutherland
  • Publication number: 20190250337
    Abstract: Assemblies, optical connectors, and methods for forming fiber arrays using laser bonded optical fibers are disclosed. In one embodiment, a method of forming a fiber array includes placing an optical fiber on a surface of a substrate, directing a laser beam into the optical fiber disposed on the surface of the substrate, melting, using the laser beam, a material of the substrate to create a first laser bond zone between the optical fiber and the surface of the substrate, applying an adhesive to the optical fiber and the substrate to create an adhesive bond zone between the optical fiber and the surface of the substrate, and cutting the optical fiber and the substrate to create a first section of the fiber array and a second section of the fiber array.
    Type: Application
    Filed: October 11, 2018
    Publication date: August 15, 2019
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov
  • Publication number: 20190248123
    Abstract: Methods of making a transparent glass-based article including at least two transparent glass-based substrates and a laser-induced bond therebetween. Methods include arranging the two transparent glass-based substrates relative to each other to form a contact area. Methods also include providing a laser beam contiguous the contact area to bond the two transparent glass-based substrates.
    Type: Application
    Filed: April 23, 2019
    Publication date: August 15, 2019
    Inventors: Stephan Lvovich Logunov, Alexander Mikhailovich Streltsov
  • Publication number: 20190218142
    Abstract: An apparatus including a first substrate, a second substrate, an inorganic film provided between the first substrate and the second substrate and in contact with both the first substrate and the second substrate, a laser welded zone formed between the first and second substrate by the inorganic film, where the laser welded zone has a heat affected zone (HAZ), where the HAZ is defined as a region in which ?HAZ is at least 1 MPa higher than average stress in the first substrate and the second substrate, wherein ?HAZ is compressive stress in the HAZ, and wherein the laser welded zone is characterized by its ?interface laser weld>?HAZ, wherein ?interface laser weld is peak value of compressive stress in the laser welded zone.
    Type: Application
    Filed: November 2, 2018
    Publication date: July 18, 2019
    Inventors: Stephan Lvovich Logunov, Yousef Kayed Qaroush, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Leo Young Zheng
  • Patent number: 10345533
    Abstract: Assemblies, optical connectors, and methods for bonding optical fibers to a substrate using a laser beam are disclosed. In one embodiment, a method of bonding an optical fiber to a substrate includes directing a laser beam into the optical fiber disposed on a surface of the substrate, wherein the optical fiber has a curved surface and the curved surface of the optical fiber focuses the laser beam to a diameter that is smaller than a diameter of the laser beam as it enters the optical fiber. The method further includes melting, using the laser beam, a material of the substrate at a bond area between the optical fiber and the surface of the substrate such that the optical fiber is bonded to the surface of the substrate.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 9, 2019
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov, Douglas Llewellyn Butler, James Scott Sutherland
  • Patent number: 10335902
    Abstract: A method of arresting propagation of an incident crack through a transparent material includes focusing pulsed laser beams into a laser beam focal line directed into the transparent material a series of locations corresponding to a predetermined pattern that is designed to arrest an incident crack that propagates through the transparent material, and generating, with the laser beam focal line (1460), an induced absorption within the transparent material in order to produce a defect (1440) in the transparent material.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 2, 2019
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Stephan Lvovich Logunov, Albert Roth Nieber, Garrett Andrew Piech, Pushkar Tandon, Sergio Tsuda
  • Publication number: 20190177206
    Abstract: An article includes SiO2 from about 40 mol % to about 80 mol %, Al2O3 from about 1 mol % to about 20 mol %, B2O3 from about 3 mol % to about 50 mol %, WO3 plus MoO3 from about 1 mol % to about 18 mol % and at least one of: (i) Au from about 0.001 mol % to about 0.5 mol %, (ii) Ag from about 0.025 mol % to about 1.5 mol %, and (iii) Cu from about 0.03 mol % to about 1 mol %, and R2O from about 0 mol % to about 15 mol %. The R2O is one or more of Li2O, Na2O, K2O, Rb2O and Cs2O. R2O minus Al2O3 ranges from about ?12 mol % to about 3.8 mol %.
    Type: Application
    Filed: November 14, 2018
    Publication date: June 13, 2019
    Inventors: Matthew John Dejneka, Jesse Kohl, Stephan Lvovich Logunov, Galan Gregory Moore
  • Patent number: 10283731
    Abstract: A method of sealing a workpiece comprising forming an inorganic film over a surface of a first substrate, arranging a workpiece to be protected between the first substrate and a second substrate wherein the inorganic film is in contact with the second substrate; and sealing the workpiece between the first and second substrates as a function of the composition of impurities in the first or second substrates and as a function of the composition of the inorganic film by locally heating the inorganic film with a predetermined laser radiation wavelength. The inorganic film, the first substrate, or the second substrate can be transmissive at approximately 420 nm to approximately 750 nm.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: May 7, 2019
    Assignee: Corning Incorporated
    Inventors: Leonard Charles Dabich, II, Stephan Lvovich Logunov, Mark Alejandro Quesada, Alexander Mikhailovich Streltsov