Patents by Inventor Stephan Lvovich Logunov

Stephan Lvovich Logunov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9281132
    Abstract: A method for sealing a liquid within a glass package and the resulting sealed glass package are described herein where the sealed glass package can be, for example, a dye solar cell, an electro-wetting display or an organic emitting light diode (OLED) display.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: March 8, 2016
    Assignee: CORNING INCORPORATED
    Inventors: Stephan Lvovich Logunov, Joseph Francis Schroeder, III
  • Patent number: 9278148
    Abstract: A light delivery system and method are provided to promote a photochemical reaction for disinfecting a surface. The system includes a light source and a light diffusing element operatively coupled to the light source and further embedded within a surface to be disinfected. The light diffusing element outputs light to the surface to promote a photochemical reaction to disinfect the surface. A low scatter light transmission medium may further be coupled between the light source and the light diffusing element to transmit light from the light source remotely to the light diffusing element.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 8, 2016
    Assignee: Corning Incorporated
    Inventors: Edward John Fewkes, Stephan Lvovich Logunov, Cynthia Jean Wilson
  • Patent number: 9250386
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: February 2, 2016
    Assignee: Corning Incorporated
    Inventors: James Gary Anderson, Dana Craig Bookbinder, Lisa Carine Chacon, Calvin Thomas Coffey, Adam James Ellison, Gregory Gerard Gausman, Rostislav Radiyevich Khrapko, Stephan Lvovich Logunov, Michael Thomas Murtagh, Clinton Damon Osterhout, Sabyasachi Sen, William Anthony Whedon
  • Publication number: 20160023944
    Abstract: Glasses with compressive stress profiles that allow higher surface compression and deeper depth of layer (DOL) than is allowable in glasses with stress profiles that follow the complementary error function at a given level of stored tension. In some instances, a buried layer or local maximum of increased compression, which can alter the direction of cracking systems, is present within the depth of layer. Theses compressive stress profiles are achieved by a three step process that includes a first ion exchange step to create compressive stress and depth of layer that follows the complimentary error function, a heat treatment at a temperature below the strain point of the glass to partially relax the stresses in the glass and diffuse larger alkali ions to a greater depth, and a re-ion-exchange at short times to re-establish high compressive stress at the surface.
    Type: Application
    Filed: October 5, 2015
    Publication date: January 28, 2016
    Inventors: Dana Craig Bookbinder, Richard Michael Fiacco, Timothy Michael Gross, Stephan Lvovich Logunov
  • Publication number: 20160009586
    Abstract: Embodiments of the present method of laser cutting a laser wavelength transparent glass article comprises feeding at least one glass article to a pulsed laser assembly having at least one pulsed laser, wherein the pulsed laser defines a laser beam focal line with a length of 0.1-100 mm, the glass article being comprised of two end sections, and at least one lateral surface disposed lengthwise between the end sections. The method further comprises laser cutting at least one perforation line onto the lateral surface of the glass article while there is relative motion between the glass article and the pulsed laser and separating the glass article along the at least one perforation line to yield a laser cut glass article.
    Type: Application
    Filed: July 8, 2015
    Publication date: January 14, 2016
    Inventors: Dana Craig Bookbinder, Lewis Kirk Klingensmith, Stephan Lvovich Logunov, Albert Roth Nieber, Helmut Schillinger, Pushkar Tandon, Sergio Tsuda
  • Publication number: 20160009585
    Abstract: Methods of fabricating formed glass articles are described herein. In one embodiment, a method for fabricating a formed glass article may include forming a glass ribbon, forming a parson, and shaping the parson to form a glass article. The glass article may be attached to the glass ribbon at an attachment region defining an edge of the glass article. The process may also include contacting the attachment region with a focal line of a laser beam and separating the glass article from the glass ribbon at the attachment region. The attachment region may be perforated by the laser beam and the focal line may be substantially perpendicular to the plane of the glass ribbon.
    Type: Application
    Filed: July 9, 2015
    Publication date: January 14, 2016
    Inventors: Dana Craig Bookbinder, Albert Roth Nieber, Stephan Lvovich Logunov, Pushkar Tandon, Sergio Tsuda
  • Publication number: 20160010833
    Abstract: Lighting units and light fixtures incorporating lighting units having light-diffusing optical fiber are disclosed. Lighting units include a light source, at least one light-diffusing optical fiber optically coupled to the light source, and a support plate. The at least one light-diffusing optical fiber scatters light that is optically coupled into the at least one light-diffusing optical fiber from the light source. The support plate has a retention groove to which a portion of the at least one light-diffusing optical fiber is coupled. The support plate also includes a perimeter. A groove length of the retention groove is greater than the perimeter of the support plate.
    Type: Application
    Filed: July 9, 2014
    Publication date: January 14, 2016
    Inventors: Edward John Fewkes, Jacques Gollier, Joydeep Lahiri, Stephan Lvovich Logunov, William James Miller, Ying Zhang
  • Publication number: 20160005548
    Abstract: A method for sealing a liquid within a glass package and the resulting sealed glass package are described herein where the sealed glass package can be, for example, a dye solar cell, an electro-wetting display or an organic emitting light diode (OLED) display.
    Type: Application
    Filed: September 15, 2015
    Publication date: January 7, 2016
    Inventors: Stephan Lvovich Logunov, Joseph Francis Schroeder, III
  • Publication number: 20150369986
    Abstract: Light diffusing optical fibers for use illumination applications and which have a uniform color gradient that is angularly independent are disclosed herein along with methods for making such fibers. The light diffusing fibers are composed of a silica-based glass core that is coated with a number of layers including a scattering layer.
    Type: Application
    Filed: August 31, 2015
    Publication date: December 24, 2015
    Inventors: Stephan Lvovich Logunov, Paul John Shustack
  • Publication number: 20150369991
    Abstract: A lighting device is provided that includes a light source package including a diode disposed in a first housing having a first opening, the diode emitting light at an emission point within the first housing. The lighting device also has a lens disposed on the first housing proximate the first opening and optically aligned with the emission point and a second housing substantially enclosing the first housing and the lens, the second housing having a second opening. The lighting device also includes an optical fiber extending through the second opening in the second housing and having a terminal end optically aligned with the lens and diode. The lens is disposed between the terminal end of the fiber and the diode, and the terminal end of the fiber is within a distance of less than 2.5 millimeters from the emission point, and the fiber emits light via a light diffusing fiber.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 24, 2015
    Inventors: Anthony Sebastian Bauco, Vikram Bhatia, Stephan Lvovich Logunov
  • Patent number: 9217826
    Abstract: At least one flexible light diffusing waveguide is arranged to define a plurality of light diffusing waveguide segments arranged substantially parallel to one another, and is coupled to at least one light source to provide a flexible light panel suitable for general lighting purposes or for use as a backlight in a display, such as a video display. Multiple waveguides can be coupled to different color light sources to provide a multi-colored flexible backlight that is usable in combination with a flexible matrix-addressable panel to provide a flexible video display.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: December 22, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Nobutoshi Sekiguchi, Luis Alberto Zenteno
  • Patent number: 9207397
    Abstract: A light-diffusing optical fiber that includes a core region in the fiber that comprises a core glass composition; and an inner cladding in the fiber that surrounds the core region and comprises a cladding glass composition that substantially differs from the core glass composition. The core glass composition comprises a doped, low-melting point silica glass having less than 90% by weight SiO2, and the numerical aperture of the fiber is greater than or equal to 0.4. Further, light-diffusing optical fiber bundles that include a jacket comprising a scattering element; and a plurality of the light-diffusing optical fibers arranged within the jacket. Also, light-diffusing optical fiber bundles that include a transparent jacket; and a plurality of the light-diffusing optical fibers arranged within the jacket, the fibers further configured with an outer cladding having a plurality of scattering elements.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: December 8, 2015
    Assignee: Corning Incorporated
    Inventors: Kevin Wallace Bennett, Stephan Lvovich Logunov
  • Publication number: 20150346411
    Abstract: A lighting device is provided that includes a light source package including a diode disposed in a housing and emitting light at an emission point within the housing. The lighting device also has an optical fiber extending through an opening in the housing and having a terminal end optically aligned on an optical axis with the diode to within a distance of less than 1.0 millimeter from the emission point, wherein the fiber emits light via a light diffusing fiber.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 3, 2015
    Inventors: Anthony Sebastian Bauco, Vikram Bhatia, Stephan Lvovich Logunov
  • Publication number: 20150316712
    Abstract: Disclosed is an optical fiber having a core with an alkali metal oxide dopant in an peak amount greater than about 0.002 wt. % and less than about 0.1 wt. %. The alkali metal oxide concentration varies with a radius of the optical fiber. By appropriately selecting the concentration of alkali metal oxide dopant in the core and the cladding, a low loss optical fiber may be obtained. Also disclosed are several methods of making the optical fiber including the steps of forming an alkali metal oxide-doped rod, and adding additional glass to form a draw perform. Preferably, the draw preform has a final outer dimension (d2), wherein an outer dimension (d1) of the rod is less than or equal to 0.06 times the final outer dimension (d2). In a preferred embodiment, the alkali metal oxide-doped rod is inserted into the centerline hole of a preform to form an assembly.
    Type: Application
    Filed: June 25, 2014
    Publication date: November 5, 2015
    Inventors: James Gary Anderson, Dana Craig Bookbinder, Lisa Carine Chacon, Calvin Thomas Coffey, Adam James Ellison, Gregory Gerard Gausman, Rostislav Radiyevich Khrapko, Stephan Lvovich Logunov, Michael Thomas Murtagh, Clinton Damon Osterhout, Sabyasachi Sen, William Anthony Whedon
  • Patent number: 9165719
    Abstract: A method for sealing a liquid within a glass package and the resulting sealed glass package are described herein where the sealed glass package can be, for example, a dye solar cell, an electro-wetting display or an organic emitting light diode (OLED) display.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: October 20, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Joseph Francis Schroeder, III
  • Patent number: 9158080
    Abstract: Light-coupling apparatus and methods for light-diffusing optical fibers are disclosed. The light-coupling apparatus includes a light-diffusing fiber bundle having an end section made up of tightly packed cores by removing the claddings. The spaces between the cores are filled with a material having a refractive index equal to or less than that of the cores. A light-emitting diode light source can be butt-coupled to the bundled-core end of the light-diffusing fiber bundle or can be coupled thereto via a reflective concentrator. A method of forming a flat and smooth end on a cleaved fiber that has a rough end is also disclosed.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 13, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Nikolay Timofeyevich Timofeev
  • Patent number: 9150450
    Abstract: A sealing device and method are described herein that can be used to manufacture a hermetically sealed glass package. In one embodiment, the hermetically sealed glass package is suitable to protect thin film devices which are sensitive to the ambient environment (e.g., oxygen, moisture). Some examples of such glass packages are organic emitting light diode (OLED) displays, sensors, and other optical devices. The present invention is demonstrated using an OLED display as an example.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: October 6, 2015
    Assignee: Corning Incorporated
    Inventors: Keith James Becken, Stephan Lvovich Logunov, Robert Stephen Wagner, Aiyu Zhang, Lu Zhang
  • Patent number: 9146347
    Abstract: Light diffusing optical fibers for use in ultraviolet illumination applications and which have a uniform color gradient that is angularly independent are disclosed herein along with methods for making such fibers. The light diffusing fibers are composed of a silica-based glass core that is coated with a number of layers including a scattering layer.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: September 29, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Paul John Shustack
  • Patent number: 9093003
    Abstract: An illuminated color display panel having at least one light diffusing waveguide, and a transparent panel having at least one luminophore provided in a predetermined pattern on at least one major planar surface of the transparent panel is provided. Light from at least one light source is coupled to the waveguide and light from the waveguide is coupled to the panel at or adjacent at least one edge of the panel. The resulting illuminated color display panel is useful for general lighting purposes and signage.
    Type: Grant
    Filed: October 2, 2012
    Date of Patent: July 28, 2015
    Assignee: Corning Incorporated
    Inventors: Stephan Lvovich Logunov, Alranzo Boh Ruffin
  • Publication number: 20150148734
    Abstract: An illuminated bandage and method of disinfecting a wound. The illuminated bandage includes a power source, a light source coupled to the power source to generate light and a patch. The patch includes a supporting medium and at least one light diffusing element in the supporting medium and optically coupled to the light source. The light diffusing element outputs light to promote a photochemical reaction to disinfect a wound surface proximate thereto.
    Type: Application
    Filed: November 13, 2014
    Publication date: May 28, 2015
    Inventors: Edward John Fewkes, Stephan Lvovich Logunov, Cynthia Jean Wilson