Patents by Inventor Stephan Wieber

Stephan Wieber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210062106
    Abstract: The invention relates to polymeric-inorganic nanoparticle compositions and preparation processes thereof. The invention also relates to an additive and lubricant composition comprising these polymeric-inorganic nanoparticle compositions, as well as to the use of these polymeric-inorganic nanoparticle compositions in an oil lubricant formulation to improve tribological performance, in particular to improve anti-friction performance on metal parts.
    Type: Application
    Filed: January 22, 2019
    Publication date: March 4, 2021
    Applicant: Evonik Operations GmbH
    Inventors: Stephan Wieber, Sofia Sirak, Daniel Neß, Roland Wilkens, Rebecca Jüstel, Günter Schmitt, Michael Hagemann
  • Publication number: 20200369977
    Abstract: The invention relates to polymeric-inorganic nanoparticle compositions and preparation processes thereof. The invention also relates to an additive and lubricant compositions comprising these polymeric-inorganic nanoparticle compositions, as well as to the use of these polymeric-inorganic nanoparticle compositions in an oil lubricant formulation to improve tribological performance, in particular to improve extreme pressure performance and friction reduction on metal parts.
    Type: Application
    Filed: January 22, 2019
    Publication date: November 26, 2020
    Applicant: Evonik Operations GmbH
    Inventors: Stephan Wieber, Christofer Philipp Kronschnabl, Ronny Sondjaja, Sofia Sirak, Daniel Neß, Roland Wilkens, Günter Schmitt, Can Metehan Turhan
  • Patent number: 10793731
    Abstract: The present invention relates to the technical field of 3D printing, in particular in the form of the binder jetting process in which particles in a powder bed are adhesive-bonded by means of a printed adhesive to give a three-dimensional object. The particles here can be inorganic materials, e.g. sand or a metal powder, or polymeric particles, such as polymethacrylates or polyamides. To this end, polymethacrylates can by way of example take the form of suspension polymers known as bead polymers. In this context the present invention in particular relates to, as powders for 3D printing, suspension polymers which differ from the prior art in that they comprise a hard phase and an uncrosslinked soft phase.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: October 6, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Stefan Bernhardt, Thomas Hasskerl, Dirk Poppe, Stephan Wieber
  • Patent number: 10695978
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particles in a powder bed are bonded by means of a printed adhesive to form a three-dimensional object. The particles may be inorganic particles, for example sand or a metal powder, or polymeric particulate, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers.
    Type: Grant
    Filed: April 4, 2017
    Date of Patent: June 30, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Dirk Poppe, Andrea Fruth, Stefan Bernhardt, Stephan Wieber
  • Patent number: 10688718
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particulate material in a powder bed is bonded by means of a printed adhesive to form a three-dimensional object. The particulate materials may be inorganic materials, for example sand or a metal powder, or particulate polymeric materials, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers. The present invention relates to the use of porous particles in the binder jetting process, in particular of porous suspension polymers. These powders for 3-D printing differ from the prior art in that the porosity results in a faster and better absorption of the printed binder by the powder particles. A great advantage of this procedure is additionally that a product with less warpage is formed and that the end product has a better surface appearance.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: June 23, 2020
    Assignee: Evonik Operations GmbH
    Inventors: Stephan Wieber, Dirk Poppe, Stefan Bernhardt, Markus Pridöhl, Sven Balk, Christian Meier, Senada Schaack, Thomas Hasskerl
  • Publication number: 20190299520
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particulate material in a powder bed is bonded by means of a printed adhesive to form a three-dimensional object. The particulate materials may be inorganic materials, for example sand or a metal powder, or particulate polymeric materials, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers. The present invention relates to the use of porous particles in the binder jetting process, in particular of porous suspension polymers. These powders for 3-D printing differ from the prior art in that the porosity results in a faster and better absorption of the printed binder by the powder particles. A great advantage of this procedure is additionally that a product with less warpage is formed and that the end product has a better surface appearance.
    Type: Application
    Filed: September 11, 2017
    Publication date: October 3, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Stephan Wieber, Dirk POPPE, Stefan BERNHARDT, Markus PRIDOHL, Sven BALK, Chrisian MEIER, Senada SCHAACK, Thomas HASSKERL
  • Patent number: 10385217
    Abstract: The present invention relates to formulations comprising at least one hydridosilane of the generic formula SinH2n+2 with n=7-10 and at least one hydridosilane oligomer, to processes for preparation thereof and to the use thereof.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 20, 2019
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Traut, Matthias Patz, Stephan Wieber, Paul Henrich Wöbkenberg, Joachim Erz, Jutta Hessing
  • Publication number: 20190126542
    Abstract: The present invention relates to the technical field of 3D printing, especially in the form of the binder jetting method, in which particles in a powder bed are bonded by means of a printed adhesive to form a three-dimensional object. The particles may be inorganic particles, for example sand or a metal powder, or polymeric particulate, for example polymethacrylates or polyamides. For this purpose, polymethacrylates may take the form, for example, of suspension polymers, called bead polymers.
    Type: Application
    Filed: April 4, 2017
    Publication date: May 2, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Dirk POPPE, Andrea FRUTH, Stefan BERNHARDT, Stephan WIEBER
  • Publication number: 20190127598
    Abstract: The present invention relates to the technical field of 3D printing, in particular in the form of the binder jetting process in which particles in a powder bed are adhesive-bonded by means of a printed adhesive to give a three-dimensional object. The particles here can be inorganic materials, e.g. sand or a metal powder, or polymeric particles, such as polymethacrylates or polyamides. To this end, polymethacrylates can by way of example take the form of suspension polymers known as bead polymers. In this context the present invention in particular relates to, as powders for 3D printing, suspension polymers which differ from the prior art in that they comprise a hard phase and an uncrosslinked soft phase.
    Type: Application
    Filed: April 12, 2017
    Publication date: May 2, 2019
    Applicant: Evonik Röhm GmbH
    Inventors: Stefan Bernhardt, Thomas HASSKERL, Dirk POPPE, Stephan WIEBER
  • Patent number: 9865461
    Abstract: The present invention relates to a liquid-phase process for producing structured silicon- and/or germanium-containing coatings by the application to a substrate of at least one coating composition, the partial activation of the resulting coating on the coated substrate, and oxidation of non-activated coating on the substrate, to the coats produced by the process and to their use.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: January 9, 2018
    Assignee: Evonik Degussa GmbH
    Inventors: Christoph Mader, Paul Henrich Woebkenberg, Joachim Erz, Stephan Traut, Matthias Patz, Michael Coelle, Stephan Wieber, Patrik Stenner, Janette Klatt, Odo Wunnicke
  • Patent number: 9745200
    Abstract: The invention relates to a process for preparing higher halosilanes by disproportionation of lower halosilanes. The invention further relates to a process for preparing higher hydridosilanes from the higher halosilanes prepared by disproportionation. The invention further relates to mixtures containing at least one higher halosilane or at least one higher hydridosilane prepared by the process described. Finally, the invention relates to the use of such a mixture containing at least one higher hydridosilane for producing electronic or optoelectronic component layers or for producing silicon-containing layers.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: August 29, 2017
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Wieber, Matthias Patz, Harald Stueger, Christoph Walkner
  • Patent number: 9464099
    Abstract: The present invention provides processes for preparing carbon-containing hydridosilanes, in which an optionally boron- or phosphorus-doped hydridosilane is reacted without catalyst and reducing agent with at least one carbon source selected from linear, branched or cyclic carbosilanes, halogenated hydrocarbons, carbenes, alkyl azides, diazomethane, dimethyl sulphate or alcohols, the carbon-containing hydridosilane oligomers obtainable by the process and the use thereof.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: October 11, 2016
    Assignee: EVONIK DEGUSSA GmbH
    Inventors: Stephan Traut, Stephan Wieber, Matthias Patz, Michael Coelle, Harald Stueger, Christoph Walkner
  • Patent number: 9362112
    Abstract: The invention relates to a process for producing p-doped silicon layers, especially those silicon layers which are produced from liquid silane-containing formulations. The invention further relates to a substrate coated with a p-doped silicon layer. The invention additionally relates to the use of particular dopants based on boron compounds for p-doping of a silicon layer.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: June 7, 2016
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Wieber, Matthias Patz, Harald Stueger, Jasmin Lehmkuhl
  • Publication number: 20160155637
    Abstract: The present invention relates to a liquid-phase process for producing structured silicon- and/or germanium-containing coatings by the application to a substrate of at least one coating composition, the partial activation of the resulting coating on the coated substrate, and oxidation of non-activated coating on the substrate, to the coats produced by the process and to their use.
    Type: Application
    Filed: June 6, 2014
    Publication date: June 2, 2016
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Christoph MADER, Paul Henrich WOEBKENBERG, Joachim ERZ, Stephan TRAUT, Matthias PATZ, Michael COELLE, Stephan WIEBER, Patrik STENNER, Janette KLATT, Odo WUNNICKE
  • Publication number: 20160145440
    Abstract: The present invention relates to formulations comprising at least one hydridosilane of the generic formula SinH2n+2 with n=7-10 and at least one hydridosilane oligomer, to processes for preparation thereof and to the use thereof.
    Type: Application
    Filed: June 12, 2014
    Publication date: May 26, 2016
    Applicant: Evonik Degussa GmbH
    Inventors: Stephan TRAUT, Matthias PATZ, Stephan WIEBER, Paul Henrich WÖBKENBERG, Joachim ERZ
  • Patent number: 9234281
    Abstract: The invention relates to a liquid-phase method for the thermal production of silicon layers on a substrate, wherein at least one higher silicon that can be produced from at least one hydridosilane of the generic formula SiaH2a+2 (with a=3-10) being applied to a substrate and then being thermally converted to a layer that substantially consists of silicon, the thermal conversion of the higher silane proceeding at a temperature of 500-900° C. and a conversion time of ?5 minutes. The invention also relates to silicon layers producible according to said method and to their use.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: January 12, 2016
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Wieber, Matthias Patz, Reinhard Carius, Torsten Bronger, Michael Cölle
  • Publication number: 20150329680
    Abstract: The present invention provides processes for preparing carbon-containing hydridosilanes, in which an optionally boron- or phosphorus-doped hydridosilane is reacted without catalyst and reducing agent with at least one carbon source selected from linear, branched or cyclic carbosilanes, halogenated hydrocarbons, carbenes, alkyl azides, diazomethane, dimethyl sulphate or alcohols, the carbon-containing hydridosilane oligomers obtainable by the process and the use thereof.
    Type: Application
    Filed: October 31, 2013
    Publication date: November 19, 2015
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Stephan TRAUT, Stephan WIEBER, Matthias PATZ, Michael COELLE, Harald STUEGER, Christoph WALKNER
  • Patent number: 9017630
    Abstract: The invention relates to a method for producing hydridosilanes from halosilanes by a) reacting i) at least one halosilane of the generic formula SinX2n+2 (with n?3 and X?F, Cl, Br and/or I) with ii) at least one catalyst of the generic formula NRR'aR?bYc with a=0 or 1, b=0 or 1, and c=0 or 1, and formula (I), wherein aa) R, R? and/or R? are —C1-C12 alkyl, —C1-C12 aryl, —C1-C12 aralkyl, —C1-C12 aminoalkyl, —C1-C12 aminoaryl, —C1-C12 aminoaralkyl, and/or two or three groups R, R? and R? (if c=0) together form a cyclic or bicyclic, heteroaliphatic or heteroaromatic system including N, with the proviso that at least one group R, R? or R? is unequal —CH3 and/or wherein bb) R and R? and/or R?' (if c=1) are —C1-C12 alkylene, —C1-C12 arylene, —C1-C12 aralkylene, —C1-C12 heteroalkylene, —C1-C12 heteroarylene, —C1-C12 heteroaralkylene and/or —N?, or cc) (if a=b=c=0) R??C-R?? (with R???—C1-C10 alkyl, —C1-C10 aryl and/or —C1-C10 aralkyl), while forming a mixture comprising at least one halosilane of the generic formula S
    Type: Grant
    Filed: November 8, 2010
    Date of Patent: April 28, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Wieber, Matthias Patz, Martin Trocha, Hartwig Rauleder, Ekkehard Mueh, Harald Stueger, Christoph Walkner
  • Patent number: 9011812
    Abstract: The present invention relates to a process for preparing hydridosilanes from halosilanes, in which a) i) at least one halosilane of the generic formula SinX2n+2 (where n?3 and X=F, Cl, Br and/or I) and ii) at least one catalyst are converted to form a mixture comprising at least one halosilane of the generic formula SimX2m+2 (where m>n and X=F, Cl, Br and/or I) and SiX4 (where X=F, Cl, Br and/or I), and b) the at least one halosilane of the generic formula SimX2m+2 is hydrogenated to form a hydridosilane of the generic formula SimH2m+2, the hydridosilane of the generic formula SimH2m+2 is separated from partially halogenated hydridosilanes of the general formula SimH(2m+2?y)Xy (where 1<y<2m+1), and the separated partially halogenated hydridosilanes of the general formula SimH(2m+2?y)Xy (where 1<y<2m+1) are hydrogenated again.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 21, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Nicole Brausch, Jens Haubrock, Udo Knippenberg, Thorsten Schwaertzke, Joerg Zoellner, Stephan Wieber
  • Patent number: 8969610
    Abstract: The present invention relates to a method for oligomerizing hydridosilanes, wherein a composition comprising substantially at least one non-cyclic hydridosilane having a maximum of 20 silicon atoms as the hydridosilane is thermally converted at temperatures below 235° C. in the absence of a catalyst, the oligomers that can be produced according to the method, and the use thereof.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: March 3, 2015
    Assignee: Evonik Degussa GmbH
    Inventors: Stephan Wieber, Matthias Patz, Bernhard Stuetzel, Michael Coelle, Nicole Brausch, Janette Klatt, Jutta Hessing