Patents by Inventor Stephen A. Johnson

Stephen A. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200058493
    Abstract: The present method comprises providing a flexible web substrate (e.g., polymeric flexible web substrates) that forms at least part of a component of a device, coating so as to wet-out on and cover all or a substantial portion of a major surface on one side or both sides of the flexible web substrate with flowable polymeric material, while the flexible web substrate is moving in a down-web direction, and solidifying the polymeric material so as to form one cleaning layer on the major surface of one side or both sides of the flexible web substrate. The present invention can be utilized in a continuous in-line manufacturing process. In applications of the present invention where the flexible web substrate will not form a component of a device, the present invention broadly provides a method for cleaning particles from a flexible web of indefinite length.
    Type: Application
    Filed: October 24, 2019
    Publication date: February 20, 2020
    Inventors: William R. Dudley, William Blake Kolb, Michael A. Johnson, Stephen A. Johnson, Chris J. Tanley
  • Publication number: 20190374309
    Abstract: The present disclosure provides a printable composition. The printable composition includes a polymer, a polymerizable component, a temporary solvent, a photoinitiator, and optionally an inhibitor. The present disclosure also provides an article including an integral blend of a thermoset polymer and a second polymer different from the thermoset polymer. Further, the present disclosure provides a method of making an article. The method includes (i) providing a printable composition; (ii) selectively curing the printable composition to form a gelled article; and (iii) removing at least a portion of the temporary solvent from the gelled article. The method may optionally include (iv) curing unpolymerized polymerizable component remaining before or after step (iii). Also, methods are provided, including receiving, by a manufacturing device having one or more processors, a digital object comprising data specifying a plurality of layers of an article, the article including: an integral blend of 8 to 50 wt.
    Type: Application
    Filed: December 20, 2017
    Publication date: December 12, 2019
    Inventors: Zeba Parkar, Alexander J. Huffman, Mahfuza B. Ali, Stephen A. Johnson, Victor Ho
  • Publication number: 20190369314
    Abstract: Multilayer infrared (IR) reflecting films are provided. An optical repeating unit of the film include a plurality of optical polymeric layers arranged to reflect light by constructive and destructive interference. Optical layer A is a high refractive index polymeric layer, and optical layer B is a low refractive index isotropic polymeric layer containing fluoropolymers. The film has an average reflectance of about 50% to about 100% in a near infrared wavelength range of about 850 nm to about 1850 nm, and an average transmission of about 70% to about 90% in a visible light range.
    Type: Application
    Filed: September 25, 2017
    Publication date: December 5, 2019
    Inventors: Timothy J. Hebrink, Mark B. O'Neill, Stephen J. Kuncio, Edward J. Kivel, Laurence R. Gilbert, Tracey D. Sorensen, Timothy J. Nevitt, Stephen A. Johnson
  • Patent number: 10494363
    Abstract: The present invention relates to a compound according to formula (I) wherein R1 is selected from the group consisting of 5- and 6-membered heteroaryl, (C1-C6)alkyl, (C3-C6)cycloalkyl, (4-6)-membered heterocycloalkyl and phenyl; R2 is selected from (C1-C3)alkyl and halo(C1-C3)alkyl; R3 is selected from phenyl, 5-membered heteroaryl and 6-membered heteroaryl; R4 is selected from hydrogen, halogen, (C1-C4)alkyl and halo(C1-C4)alkyl; X1 is selected from CH, C(Rb) and N, X2 is selected from CH and N; Y is selected from —NH— and —O—; m is 0 or 1; n is 0 or 1; L represents a bond, —O—, —NH— or —N(Rc)—; or pharmaceutically acceptable salts, hydrates, or solvates thereof. The invention relates further to intermediates for the preparation of said compounds, to said compounds for use in therapy, to pharmaceutical compositions comprising said compounds, to methods of treating diseases with said compounds, and to the use of said compounds in the manufacture of medicaments.
    Type: Grant
    Filed: September 13, 2016
    Date of Patent: December 3, 2019
    Assignee: Leo Pharma A/S
    Inventors: Patrick Stephen Johnson, Kevin Neil Dack, Krister Henriksson
  • Patent number: 10495801
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: March 8, 2019
    Date of Patent: December 3, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20190358947
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Application
    Filed: August 6, 2019
    Publication date: November 28, 2019
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Patent number: 10462729
    Abstract: A method of operating an interconnect server for a roaming network, the roaming network having a plurality of cellular networks and a plurality of hotspot networks formed of wireless access points, the interconnect server being connectable to a routing server within each of the plurality of cellular networks and to a routing server within each of the plurality of hotspot networks, wherein the plurality of hotspot networks are operable to allow subscriber devices of the plurality of cellular networks to connect to a wireless access point forming part of the hotspot network and access the device's subscriber cellular network, is disclosed.
    Type: Grant
    Filed: March 27, 2017
    Date of Patent: October 29, 2019
    Assignee: British Telecommunications Public Limited Company
    Inventors: Stephen Johnson, Stephen Dyett
  • Publication number: 20190284177
    Abstract: The present invention relates to a compound according to general formula (I) wherein X represents N or CH; R1 is —CN, (C1-C6)alkyl, (C3-C7)cycloalkyl, (3-7 membered)heterocycloalkyl, (5-6 membered)heteroaryl, (C3-C7)cycloalkyl(C1-C4)alkyl, (3-7 membered)heterocycloalkyl-(C1-C4)alkyl or (5-6 membered)heteroaryl-(C1-C4)alkyl; R2 is halogen, cyano, (C1-C4)alkyl or (C3-C7)cycloalkyl; R3 is halogen, cyano, (C1-C4)alkyl, (C1-C4)haloalkyl or (C3-C7)cycloalkyl; R4 is (C1-C4)alkyl or (C1-C4)haloalkyl; R5 is (C1-C6)alkyl, (C3-C7)cycloalkyl, (C1-C6)alkyl-(C3-C7)cycloalkyl, (C3-C7)cycloalkyl-(C1-C6)alkyl, (3-7 membered)heterocycloalkyl, phenyl, (5-6 membered)heteroaryl or —ORa. The invention further relates to said compounds for use in therapy, to pharmaceutical compositions comprising said compounds and to intermediates for preparation of said compounds.
    Type: Application
    Filed: July 11, 2017
    Publication date: September 19, 2019
    Inventors: Alan Stuart JESSIMAN, Patrick Stephen JOHNSON, Kristoffer MAANSSON, Morten Dahl SØRENSEN
  • Patent number: 10414145
    Abstract: Transfer films, articles made therewith, and methods of making and using transfer films to form an electrical stack are disclosed. The transfer films (100) may include a plurality of co-extensive electrical protolayers (22, 23, 24) forming an electrical protolayer stack (20), at least selected or each electrical protolayer independently comprising at least 25 wt % sacrificial material and a thermally stable material and having a uniform thickness of less than 25 micrometers. The transfer films may include a plurality of co-extensive electrical protolayers forming an electrical protolayer stack, at least selected or each protolayer independently exhibiting a complex viscosity of between 103 and 104 Poise at a shear rate of 100/s when heated to a temperature between its Tg and Tdec.
    Type: Grant
    Filed: August 26, 2015
    Date of Patent: September 17, 2019
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Martin B. Wolk, Michael Benton Free, Daniel J. Schmidt, Justin P. Meyer, Mark J. Pellerite, Stephen A. Johnson, Terry O. Collier, Xiaohua Ma
  • Publication number: 20190248117
    Abstract: Multilayered polymer films are configured so that successive constituent layer packets can be delaminated in continuous sheet form from the remaining film. The new films are compatible with known coextrusion manufacturing techniques, and can also be made without the use of adhesive layers between layer packets that are tailored to be individually peelable from the remainder of the film. Instead, combinations of polymer compositions are used to allow non-adhesive polymer layers to be combined in such a way that delamination of the film is likely to occur along a plurality of delamination surfaces corresponding to interfaces between particular pairs of layers for which the peel strength is reduced relative to the peel strength at other layer interfaces within the film. The absence of an adhesive between peelable layer packets results in the delamination being irreversible.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 15, 2019
    Inventors: Stephen A. Johnson, Onur S. Yordem, Timothy J. Lindquist, Terence D. Neavin
  • Publication number: 20190248118
    Abstract: Multilayered polymer films are configured so that successive constituent layer packets can be delaminated in continuous sheet form from the remaining film. The films are compatible with known coextrusion manufacturing techniques, and can be made without adhesive layers between layer packets that are tailored to be individually peelable from the film. Instead, combinations of polymer compositions are used to allow non-adhesive polymer layers to be combined such that irreversible delamination of the film is likely to occur at interfaces between layer packet pairs. Some polymer layers, including at least one embedded layer, may include an ultraviolet (UV) light stabilizer such as a UV absorber, antioxidant, or hindered amine light stabilizer (HALS), and these layers may be positioned at the front of each layer packet. After the UV-stabilized layer of one packet has been used, the packet can be peeled away to expose a new UV-stabilized layer of the next layer packet.
    Type: Application
    Filed: April 24, 2019
    Publication date: August 15, 2019
    Inventors: Stephen A. Johnson, Timothy J. Lindquist, Terence D. Neavin, Onur S. Yordem
  • Patent number: 10356472
    Abstract: Methods and apparatus for smoothly and efficiently upgrading set top boxes, e.g., personal video recorders, which have customer selected content stored thereon are described. The described methods allow content stored on a set top box to be uploaded to a network storage device, e.g., automatically at a predetermined time prior to a scheduled upgrade, or in some cases, via manual control of the set top box to be upgraded. After stored content is uploaded to the network storage device, the set top box is replaced with a new set top box. The new set top box can be preloaded with the previously uploaded content or a content download can be triggered, e.g., by activating a hidden application and by supplying information identifying the set top box being replaced as part of the upgrade process.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: July 16, 2019
    Assignee: Time Warner Cable Enterprise LLC
    Inventors: Hugh Josephs, Stephen Johnson
  • Publication number: 20190204493
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Application
    Filed: March 8, 2019
    Publication date: July 4, 2019
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Patent number: 10336046
    Abstract: A self-adhering tape is described comprising a substrate layer having a first major surface and opposing major surface; an adhesive layer disposed on the first major surface of the polyolefin substrate, the adhesive layer comprising a polyolefin polymer and optionally further comprising a tackifying resin; an outer layer disposed on the opposing major surface of the polyolefin substrate, the outer layer comprising a polymer comprising at least 50 wt-% C2-C3 alkylene and at least 20 wt-% C4-C20 ?-olefin. The self-adhering tape is suitable for use as a grip tape or an electrical tape. Methods of making and using the tape are also described.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: July 2, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Richard Y. Liu, Stephen A. Johnson
  • Patent number: 10309800
    Abstract: An intelligent receptacle (or receptacle device) enables individually monitoring and/or controlling consumption of utility service by one or more loads through a supply outlet that is associated with the receptacle device. A client device may enable a user to remotely control a provision of the utility service from the supply outlet through the receptacle device. Furthermore, a utility metering device may include a virtual metering device instance that is configured to collect utility consumption data associated with the supply outlet from the receptacle device and help calibration or synchronization of utility consumption readings of the receptacle device.
    Type: Grant
    Filed: May 3, 2017
    Date of Patent: June 4, 2019
    Assignee: Itron, Inc.
    Inventors: John Jay Knuth, Richard Nolan DeVries, Stephen Johnson
  • Patent number: 10301752
    Abstract: Devices and systems for use in soft tissue repair are provided, as are methods of manufacturing the same. In one exemplary embodiment, an implantable surgical construct includes an implant and a continuous braided closed filament loop that is attached to the implant. The continuous loop can be formed from a single strand of filament such that portions of the filament, sometimes referred to as tails, can be arranged with respect to each other to form a braided configuration. A related method of manufacture can involve passing portions of a single strand of filament around different sets of posts and selectively over and under each other to create the braided configuration. Other devices, systems, and methods of manufacturing are also provided, including some that involve using multiple strands of suture to form a continuous braided closed filament loop.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: May 28, 2019
    Assignee: MEDOS INTERNATIONAL SÀRL
    Inventor: Stephen Johnson
  • Patent number: 10282583
    Abstract: A fingerprint imaging system is described comprising a film including an optically transparent self-wetting adhesive layer adhered to an imaging surface of an electronic optical image sensor. Also described is a method of use of an optical imaging system, and a film and multilayer film suitable for use with a fingerprint imaging system.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 7, 2019
    Assignee: GEMALTO SA
    Inventors: Ann R. Fornof, Duane D. Fansler, Kui Chen-Ho, James P. DiZio, Kiran S. Kanukurthy, John C. Hulteen, Stephen A. Johnson, Onur Sinan Yordem
  • Publication number: 20190129218
    Abstract: Substrates suitable for use in a touch sensor are described. In some cases, the substrates include an inner layer and first and second heat-set polymeric outer layers. The first and second outer layers each have an in-plane birefringence of less than 0.1. The inner layer is substantially uniaxially birefringent and has an in-plane birefringence greater than 0.01. In some cases, a substrate includes a block copolymer which includes a first polyester and second polyester. The first polyester has a melting point greater than 200 ° C., and the second polyester having a melting point less than 200° C. The block copolymer includes the second polyester at 50 to 80 percent by weight. The substrate is substantially uniaxially birefringent and has an in-plane birefringence between 0.001 and 0.1.
    Type: Application
    Filed: May 15, 2017
    Publication date: May 2, 2019
    Inventors: Richard Y. Liu, Derek W. Patzman, Stephen A. Johnson
  • Patent number: 10254460
    Abstract: A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: April 9, 2019
    Assignee: 3M Innovative Properties Company
    Inventors: Michael Benton Free, Martin B. Wolk, Rolf W. Biernath, Stephen A. Johnson, William W. Merrill, William F. Edmonds, Claire A. Jalbert
  • Publication number: 20190098556
    Abstract: A method of operating an interconnect server for a roaming network, the roaming network having a plurality of cellular networks and a plurality of hotspot networks formed of wireless access points, the interconnect server being connectable to a routing server within each of the plurality of cellular networks and to a routing server within each of the plurality of hotspot networks, wherein the plurality of hotspot networks are operable to allow subscriber devices of the plurality of cellular networks to connect to a wireless access point forming part of the hotspot network and access the device's subscriber cellular network, is disclosed.
    Type: Application
    Filed: March 27, 2017
    Publication date: March 28, 2019
    Applicant: British Telecommunications Public Limited Company
    Inventors: Stephen JOHNSON, Stephen DYETT