Patents by Inventor Stephen A. Parke

Stephen A. Parke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6344381
    Abstract: A method of forming a pillar CMOS FET device, especially an inverter, and the device so formed is provided. The method includes forming abutting N wells and P wells in a silicon substrate and then forming N+ and P+ diffusions in the P and N wells respectively. A unitary pillar of the epitaxial silicon is grown on the substrate having a base at the substrate overlying both the N and P wells and preferably extending at least from said N+ diffusion to said P+ diffusion in said substrate. The pillar terminates at a distal end. An N well is formed on the side of the pillar overlying the N well in the substrate and a P well is formed on the side of the distal end of the pillar overlying the P well on the substrate and abuts the N well in the pillar. A P+ diffusion is formed in the N well in the pillar adjacent the distal end and a N+ diffusion is formed in the P well in the pillar adjacent the distal end.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: February 5, 2002
    Assignee: International Business Machines Corporation
    Inventors: John A. Bracchitta, Jack A. Mandelman, Stephen A. Parke, Matthew R. Wordeman
  • Patent number: 6255699
    Abstract: A method of forming a pillar CMOS FET device, especially an inverter, and the device so formed is provided. The method includes forming abutting N wells and P wells in a silicon substrate and then forming N+ and P+ diffusions in the P and N wells respectively. A unitary pillar of the epitaxial silicon is grown on the substrate having a base at the substrate overlying both the N and P wells and preferably extending at least from said N+ diffusion to said P+ diffusion in said substrate. The pillar terminates at a distal end. An N well is formed on the side of the pillar overlying the N well in the substrate and a P well is formed on the side of the distal end of the pillar overlying the P well on the substrate and abuts the N well in the pillar. A P+ diffusion is formed in the N well in the pillar adjacent the distal end and a N+ diffusion is formed in the P well in the pillar adjacent the distal end.
    Type: Grant
    Filed: May 1, 2000
    Date of Patent: July 3, 2001
    Assignee: International Business Machines Corporation
    Inventors: John A. Bracchitta, Jack A. Mandelman, Stephen A. Parke, Matthew R. Wordeman
  • Patent number: 6100123
    Abstract: A method of forming a pillar CMOS FET device, especially an inverter, and the device so formed is provided. The method includes forming abutting N wells and P wells in a silicon substrate and then forming N.sup.+ and P.sup.+ diffusions in the P and N wells respectively. A unitary pillar of the epitaxial silicon is grown on the substrate having a base at the substrate overlying both the N and P wells and preferably extending at least from said N.sup.+ diffusion to said P.sup.+ diffusion in said substrate. The pillar terminates at a distal end. An N well is formed on the side of the pillar overlying the N well in the substrate and a P well is formed on the side of the distal end of the pillar overlying the P well on the substrate and abuts the N well in the pillar. A P.sup.+ diffusion is formed in the N well in the pillar adjacent the distal end and a N.sup.+ diffusion is formed in the P well in the pillar adjacent the distal end.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: August 8, 2000
    Assignee: International Business Machines Corporation
    Inventors: John A. Bracchitta, Jack A. Mandelman, Stephen A. Parke, Matthew R. Wordeman
  • Patent number: 5889410
    Abstract: According to the preferred embodiment, a defect monitor is provided that uses a floating gate structure. The defect monitor includes a common source, a common drain, and a plurality of floating gates interdispersed between the source and drain. Additionally, a conductor covers the plurality of floating gates. By applying a bias to the conductor and measuring the current flowing through the drain and source, the distribution of defects on the semiconductor wafer can be estimated.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: March 30, 1999
    Assignee: International Business Machines Corporation
    Inventors: Badih El-Kareh, Stephen Parke
  • Patent number: 5559368
    Abstract: A dynamic threshold voltage IGFET such as a MOSFET is operable at voltages of 0.6 volt or less. The threshold voltage of the transistor is reduced to zero volt or less by interconnecting the gate contact and the device body in which the voltage controlled channel is located. Several efficient connections using through hole plating or polycrystalline silicon gate extension are disclosed. A higher power supply voltage can be used by interconnecting the gate and device body through a smaller MOSFET.
    Type: Grant
    Filed: August 30, 1994
    Date of Patent: September 24, 1996
    Assignee: The Regents of the University of California
    Inventors: Chenming Hu, Ping K. Ko, Fariborz Assaderaghi, Stephen Parke