Patents by Inventor Stephen B. Krasulick

Stephen B. Krasulick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180164500
    Abstract: A reflective structure includes an input/output port and an optical splitter coupled to the input/output port. The optical splitter has a first branch and a second branch. The reflective structure also includes a first resonant cavity optically coupled to the first branch of the optical splitter. The first resonant cavity comprises a first set of reflectors and a first waveguide region disposed between the first set of reflectors. The reflective structures further includes a second resonant cavity optically coupled to the second branch of the optical splitter. The second resonant cavity comprises a second set of reflectors and a second waveguide region disposed between the second set of reflectors.
    Type: Application
    Filed: October 30, 2017
    Publication date: June 14, 2018
    Applicant: Skorpios Technologies, Inc.
    Inventors: Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Stephen B. Krasulick
  • Patent number: 9977188
    Abstract: A method of fabricating a waveguide mode expander includes providing a substrate including a waveguide, bonding a chiplet including multiple optical material layers in a mounting region adjacent an output end of the waveguide, and selectively removing portions of the chiplet to form tapered stages that successively increase in number and lateral size from a proximal end to a distal end of the chiplet. The first optical material layer supports an input mode substantially the same size as a mode exiting the waveguide. One or more of the overlying layers, when combined with the first layer, support a larger, output optical mode size. Each tapered stage of the mode expander is formed of a portion of a respective layer of the chiplet. The first layer and the tapered stages form a waveguide mode expander that expands an optical mode of light traversing the chiplet.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 22, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Damien Lambert, Guoliang Li, John Zyskind, Stephen B. Krasulick
  • Patent number: 9960854
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 1, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi
  • Patent number: 9922967
    Abstract: Fabricating a multilevel composite semiconductor structure includes providing a first substrate comprising a first material; dicing a second substrate to provide a plurality of dies; mounting the plurality of dies on a third substrate; joining the first substrate and the third substrate to form a composite structure; and joining a fourth substrate and the composite structure.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: March 20, 2018
    Assignee: SKORPIOS TECHNOLOGIES, INC.
    Inventor: Stephen B. Krasulick
  • Patent number: 9923105
    Abstract: A method for fabricating a photonic composite device for splitting functionality across materials comprises providing a composite device having a platform and a chip bonded in the platform. The chip is processed comprising patterning, etching, deposition, and/or other processing steps while the chip is bonded to the platform. The chip is used as a gain medium and the platform is at least partially made of silicon.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: March 20, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9917417
    Abstract: A widely tunable laser system includes a substrate, first and second lasers, an output and at least one optical combining device. The first laser is integrated with the substrate, includes a gain medium that includes a first material, and emits light at a wavelength that is tunable within a first wavelength range that is determined at least in part by the first material. The second laser is integrated with the substrate, includes a gain medium that includes a second material, and emits light at a wavelength that is tunable within a second wavelength range that is different from the first wavelength range that is determined at least in part by the second material. The at least one optical combining device is configured to direct light from one or both of the first laser and the second laser to the output.
    Type: Grant
    Filed: October 4, 2016
    Date of Patent: March 13, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Guoliang Li, Stephen B. Krasulick, Damien Lambert
  • Publication number: 20180067343
    Abstract: A modulator and a capacitor are integrated on a semiconductor substrate for modulating a laser beam. Integrating the capacitor on the substrate reduces parasitic inductance for high-speed optical communication.
    Type: Application
    Filed: July 21, 2017
    Publication date: March 8, 2018
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Damien Lambert, Andrew Bonthron, Guoliang Li
  • Publication number: 20180052283
    Abstract: A method of fabricating a composite integrated optical device includes providing a substrate comprising a silicon layer, forming a waveguide in the silicon layer, and forming a layer comprising a metal material coupled to the silicon layer. The method also includes providing an optical detector, forming a metal-assisted bond between the metal material and a first portion of the optical detector, forming a direct semiconductor-semiconductor bond between the waveguide, and a second portion of the optical detector.
    Type: Application
    Filed: June 26, 2017
    Publication date: February 22, 2018
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Patent number: 9882073
    Abstract: A composite photonic device comprises a platform, a chip, and a contact layer. The platform comprises silicon. The chip is made of a III-V material. The contact layer has indentations to help control a flow of solder during bonding of the platform with the chip. In some embodiments, pedestals are placed under an optical path to prevent solder from flowing between the chip and the platform at the optical path.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: January 30, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9829630
    Abstract: A reflective structure includes an input/output port and an optical splitter coupled to the input/output port. The optical splitter has a first branch and a second branch. The reflective structure also includes a first resonant cavity optically coupled to the first branch of the optical splitter. The first resonant cavity comprises a first set of reflectors and a first waveguide region disposed between the first set of reflectors. The reflective structure further includes a second resonant cavity optically coupled to the second branch of the optical splitter. The second resonant cavity comprises a second set of reflectors and a second waveguide region disposed between the second set of reflectors.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: November 28, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Stephen B. Krasulick
  • Publication number: 20170230117
    Abstract: A 400 Gb/s transmitter is integrated on a silicon substrate. The transmitter uses four gain chips, sixteen lasers, four modulators to modulate the sixteen lasers at 25 Gb/s, and four multiplexers to produce four optical outputs. Each optical output can transmit at 100 Gb/s to produce a 400 Gb/s transmitter. Other variations are also described.
    Type: Application
    Filed: February 7, 2017
    Publication date: August 10, 2017
    Applicant: Skorpios Technologies, Inc.
    Inventors: Guoliang Li, Stephen B. Krasulick, Samir Desai
  • Patent number: 9709735
    Abstract: A method of fabricating a composite integrated optical device includes providing a substrate comprising a silicon layer, forming a waveguide in the silicon layer, and forming a layer comprising a metal material coupled to the silicon layer. The method also includes providing an optical detector, forming a metal-assisted bond between the metal material and a first portion of the optical detector, forming a direct semiconductor-semiconductor bond between the waveguide, and a second portion of the optical detector.
    Type: Grant
    Filed: October 12, 2015
    Date of Patent: July 18, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse
  • Publication number: 20170201325
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Application
    Filed: September 23, 2016
    Publication date: July 13, 2017
    Applicant: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi, Robert J. Stone
  • Patent number: 9686015
    Abstract: An optical network unit includes a transmit/receive port and a silicon waveguide optically coupled to the transmit/receive port. The optical network unit also includes a tunable filter coupled to the silicon waveguide and providing a first output for a first frequency band and a second output for a second frequency band. The optical network unit further includes a polarization diverse receiver coupled to the tunable filter and a laser coupled to the tunable filter.
    Type: Grant
    Filed: April 11, 2016
    Date of Patent: June 20, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: Amit Mizrahi, Robert J. Stone, Stephen B. Krasulick, Timothy Creazzo
  • Patent number: 9659993
    Abstract: A method of fabricating a composite semiconductor structure includes providing an SOI substrate including a plurality of silicon-based devices, providing a compound semiconductor substrate including a plurality of photonic devices, and dicing the compound semiconductor substrate to provide a plurality of photonic dies. Each die includes one or more of the plurality of photonics devices. The method also includes providing an assembly substrate having a base layer and a device layer including a plurality of CMOS devices, mounting the plurality of photonic dies on predetermined portions of the assembly substrate, and aligning the SOI substrate and the assembly substrate. The method further includes joining the SOI substrate and the assembly substrate to form a composite substrate structure and removing at least the base layer of the assembly substrate from the composite substrate structure.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: May 23, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick, Timothy Creazzo, Elton Marchena
  • Publication number: 20170110850
    Abstract: A widely tunable laser system includes a substrate, first and second lasers, an output and at least one optical combining device. The first laser is integrated with the substrate, includes a gain medium that includes a first material, and emits light at a wavelength that is tunable within a first wavelength range that is determined at least in part by the first material. The second laser is integrated with the substrate, includes a gain medium that includes a second material, and emits light at a wavelength that is tunable within a second wavelength range that is different from the first wavelength range that is determined at least in part by the second material. The at least one optical combining device is configured to direct light from one or both of the first laser and the second laser to the output.
    Type: Application
    Filed: October 4, 2016
    Publication date: April 20, 2017
    Applicant: Skorpios Technologies, Inc.
    Inventors: Guoliang Li, Stephen B. Krasulick, Damien Lambert
  • Publication number: 20170108649
    Abstract: An integrated non-reciprocal polarization rotator comprises a substrate, a Faraday crystal, a first waveguide, and a second waveguide. The substrate has a recess extending to a predetermined depth. The Faraday crystal is mounted in the recess and optically coupled with the first waveguide and the second waveguide.
    Type: Application
    Filed: August 25, 2016
    Publication date: April 20, 2017
    Applicant: Skorpios Technologies, Inc.
    Inventors: John Dallesasse, Stephen B. Krasulick
  • Patent number: 9568750
    Abstract: An optical modulator includes an input port, a first waveguide region comprising silicon and optically coupled to the input port, and a waveguide splitter optically coupled to the first waveguide region and having a first output and a second output. The optical modulator also includes a first phase adjustment section optically coupled to the first output and comprising a first III-V diode and a second phase adjustment section optically coupled to the second output and comprising a second III-V diode. The optical modulator further includes a waveguide coupler optically coupled to the first phase adjustment section and the second phase adjustment section, a second waveguide region comprising silicon and optically coupled to the waveguide coupler, and an output port optically coupled to the second waveguide region.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: February 14, 2017
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Y. Spann, Derek Van Orden, Amit Mizrahi, Timothy Creazzo, Elton Marchena, Robert J. Stone, Stephen B. Krasulick
  • Patent number: 9496431
    Abstract: A method for fabricating a composite device comprises providing a platform, providing a chip, and bonding the chip to the platform. The platform has a base layer and a device layer above the base layer. An opening in the device layer exposes a portion of the base layer. The chip is bonded to the portion of the base layer exposed by the opening in the device layer. A portion of the chip extends above the platform and is removed.
    Type: Grant
    Filed: October 8, 2014
    Date of Patent: November 15, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, John Dallesasse, Amit Mizrahi, Timothy Creazzo, Elton Marchena, John Y. Spann
  • Patent number: 9479262
    Abstract: A method of operating a BPSK modulator includes receiving an RF signal at the BPSK modulator and splitting the RF signal into a first portion and a second portion that is inverted with respect to the first portion. The method also includes receiving the first portion at a first arm of the BPSK modulator, receiving the second portion at a second arm of the BPSK modulator, applying a first tone to the first arm of the BPSK modulator, and applying a second tone to the second arm of the BPSK modulator. The method further includes measuring a power associated with an output of the BPSK modulator and adjusting a phase applied to at least one of the first arm of the BPSK modulator or the second arm of the BPSK modulator in response to the measured power.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: October 25, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Stephen B. Krasulick, Timothy Creazzo, Kalpit Jha, Elton Marchena, Amit Mizrahi