Patents by Inventor Stephen C. Minne

Stephen C. Minne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11965900
    Abstract: The present disclosure describes a method, a system, and a computer program product of indicating a status of an analytical instrument on a screen of the analytical instrument. In an embodiment, the method, the system, and the computer program product include receiving data from an analytical instrument monitoring a liquid sample, segmenting the received data into data segments for at least two characteristics of at least one of the instrument, the sample, and an operating environment of the instrument, analyzing each of the data segments for the at least two characteristics, retrieving threshold values for the at least two characteristics from a computer data source, calculating at least one status of at least one of the instrument, the sample, and the operating environment, with respect to the analyzed data segments and the threshold values, and displaying the at least one status on a display of the instrument.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 23, 2024
    Assignee: Wyatt Technology, LLC
    Inventors: Vivianna Day, Jeremy W. Jarrett, Shiva K. Ramini, Barbara R. Maurer, Michael I. Larkin, Stephen C. Minne
  • Publication number: 20230390021
    Abstract: New and innovative systems and methods for registration degradation correction for surgical procedures are disclosed. An example system includes a surgical marking pen including a first trackable target and a registration plate including a second trackable target. The system also includes a navigation camera and a processor configured to perform a pen registration that determines a transformation between a tip of the surgical marking pen and the first trackable target when the tip of the surgical marking pen is placed on the registration plate. The pen registration enables the processor to record virtual marks at locations of the pen tip that correspond to physical marks drawn by the pen. Locations of the virtual marks are later compared to images of the physical marks to correct any registration degradation by moving a surgical camera or robotic arm connected to the surgical camera.
    Type: Application
    Filed: January 11, 2022
    Publication date: December 7, 2023
    Inventors: George C. Polchin, Stephen C. Minne
  • Publication number: 20200150137
    Abstract: The present disclosure describes a method, a system, and a computer program product of indicating a status of an analytical instrument on a screen of the analytical instrument. In an embodiment, the method, the system, and the computer program product include receiving data from an analytical instrument monitoring a liquid sample, segmenting the received data into data segments for at least two characteristics of at least one of the instrument, the sample, and an operating environment of the instrument, analyzing each of the data segments for the at least two characteristics, retrieving threshold values for the at least two characteristics from a computer data source, calculating at least one status of at least one of the instrument, the sample, and the operating environment, with respect to the analyzed data segments and the threshold values, and displaying the at least one status on a display of the instrument.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 14, 2020
    Applicant: Wyatt Technology Corporation
    Inventors: Vivianna Day, Jeremy W. Jarrett, Shiva K. Ramini, Barbara R. Maurer, Michael I. Larkin, Stephen C. Minne
  • Patent number: 9869694
    Abstract: An apparatus and method of collecting topography, mechanical property data and electrical property data with an atomic force microscope (AFM) in either a single pass or a dual pass operation. PFT mode is preferably employed thus allowing the use of a wide range of probes, one benefit of which is to enhance the sensitivity of electrical property measurement.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 16, 2018
    Assignee: Bruker Nano, Inc.
    Inventors: Chunzeng Li, Yan Hu, Ji Ma, Jianli He, Lin Huang, Stephen C. Minne, Henry Mittel, Weijie Wang, Shuiqing Hu, Chanmin Su
  • Publication number: 20160178659
    Abstract: An apparatus and method of collecting topography, mechanical property data and electrical property data with an atomic force microscope (AFM) in either a single pass or a dual pass operation. PFT mode is preferably employed thus allowing the use of a wide range of probes, one benefit of which is to enhance the sensitivity of electrical property measurement.
    Type: Application
    Filed: December 15, 2015
    Publication date: June 23, 2016
    Inventors: Chunzeng Li, Yan Hu, Ji Ma, Jianli He, Lin Huang, Stephen C. Minne, Henry Mittel, Weijie Wang, Shuiqing Hu, Chanmin Su
  • Publication number: 20160033547
    Abstract: An apparatus and method of performing physical property measurements on a sample with a probe-based metrology instrument employing a nano-confined light source is provided. In one embodiment, an SPM probe tip is configured to support an appropriate receiving element so as to provide a nano-localized light source that is able to efficiently and locally excite the sample on the nanoscale. Preferably, the separation between the tip apex and the sample during spectroscopic measurements is maintained at less than 10 nm, for example, using an AFM TR Mode control scheme.
    Type: Application
    Filed: June 9, 2015
    Publication date: February 4, 2016
    Inventors: Markus B. Raschke, Stefan B. Kaemmer, Stephen C. Minne, Chanmin Su
  • Patent number: 9213047
    Abstract: An apparatus and method of collecting topography, mechanical property data and electrical property data with an atomic force microscope (AFM) in either a single pass or a dual pass operation. PFT mode is preferably employed thus allowing the use of a wide range of probes, one benefit of which is to enhance the sensitivity of electrical property measurement.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: December 15, 2015
    Assignee: Bruker Nano, Inc.
    Inventors: Chunzeng Li, Yan Hu, Ji Ma, Jianli He, Lin Huang, Stephen C. Minne, Henry Mittel, Weijie Wang, Shuiqing Hu, Chanmin Su
  • Patent number: 9052336
    Abstract: An apparatus and method of performing physical property measurements on a sample with a probe-based metrology instrument employing a nano-confined light source is provided. In one embodiment, an SPM probe tip is configured to support an appropriate receiving element so as to provide a nano-localized light source that is able to efficiently and locally excite the sample on the nanoscale. Preferably, the separation between the tip apex and the sample during spectroscopic measurements is maintained at less than 10 nm, for example, using an AFM TR Mode control scheme.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: June 9, 2015
    Assignee: Bruker Nano, Inc.
    Inventors: Markus B. Raschke, Stefan B. Kaemmer, Stephen C. Minne, Chanmin Su
  • Publication number: 20150067930
    Abstract: An apparatus and method of performing physical property measurements on a sample with a probe-based metrology instrument employing a nano-confined light source is provided. In one embodiment, an SPM probe tip is configured to support an appropriate receiving element so as to provide a nano-localized light source that is able to efficiently and locally excite the sample on the nanoscale. Preferably, the separation between the tip apex and the sample during spectroscopic measurements is maintained at less than 10 nm, for example, using an AFM TR Mode control scheme.
    Type: Application
    Filed: November 4, 2014
    Publication date: March 5, 2015
    Inventors: Markus B. Raschke, Stefan B. Kaemmer, Stephen C. Minne, Chanmin Su
  • Patent number: 8881311
    Abstract: An apparatus and method of performing physical property measurements on a sample with a probe-based metrology instrument employing a nano-confined light source is provided. In one embodiment, an SPM probe tip is configured to support an appropriate receiving element so as to provide a nano-localized light source that is able to efficiently and locally excite the sample on the nanoscale. Preferably, the separation between the tip apex and the sample during spectroscopic measurements is maintained at less than 10 nm, for example, using an AFM TR Mode control scheme.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: November 4, 2014
    Assignee: Bruker Nano, Inc.
    Inventors: Markus B. Raschke, Stefan B. Kaemmer, Stephen C. Minne, Chanmin Su
  • Publication number: 20140259234
    Abstract: An apparatus and method of performing physical property measurements on a sample with a probe-based metrology instrument employing a nano-confined light source is provided. In one embodiment, an SPM probe tip is configured to support an appropriate receiving element so as to provide a nano-localized light source that is able to efficiently and locally excite the sample on the nanoscale. Preferably, the separation between the tip apex and the sample during spectroscopic measurements is maintained at less than 10 nm, for example, using an AFM TR Mode control scheme.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 11, 2014
    Applicant: Bruker Nano, Inc.
    Inventors: Markus B. Raschke, Stefan B. Kaemmer, Stephen C. Minne, Chanmin Su
  • Publication number: 20130276174
    Abstract: An apparatus and method of collecting topography, mechanical property data and electrical property data with an atomic force microscope (AFM) in either a single pass or a dual pass operation. PFT mode is preferably employed thus allowing the use of a wide range of probes, one benefit of which is to enhance the sensitivity of electrical property measurement.
    Type: Application
    Filed: June 24, 2013
    Publication date: October 17, 2013
    Inventors: Chunzeng Li, Yan Hu, Ji Ma, Jianli He, Lin Huang, Stephen C. Minne, Henry Mittel, Weijie Wang, Shuiqing Hu, Chanmin Su
  • Patent number: 7691661
    Abstract: A method of making a probe having a cantilever and a tip include providing a substrate having a surface and forming a tip extending substantially orthogonally from the surface. The method includes depositing an etch stop layer on the substrate, whereby the etch stop layer protects the tip during process. A silicon nitride layer is then deposited on the etch stop layer. An etch operation is used to release the cantilever and expose the etch stop layer protecting the tip. Preferably, the tip is silicon and the cantilever supporting the tip, preferably via the etch stop layer, is silicon nitride. A probe for a surface analysis instrument made according to the method includes a tip and a silicon nitride cantilever having a thickness defined during the deposition process.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: April 6, 2010
    Assignee: Veeco Instruments, Inc.
    Inventor: Stephen C. Minne
  • Patent number: 7204131
    Abstract: A scanning probe microscope method and apparatus that modifies imaging dynamics using an active drive technique to optimize the bandwidth of amplitude detection. The deflection is preferably measured by an optical detection system including a laser and a photodetector, which measures cantilever deflection by an optical beam bounce technique or another conventional technique. The detected deflection of the cantilever is subsequently demodulated to give a signal proportional to the amplitude of oscillation of the cantilever, which is thereafter used to drive the cantilever.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: April 17, 2007
    Assignee: Veeco Instruments Inc.
    Inventors: Dennis M. Adderton, Stephen C. Minne
  • Patent number: 7036357
    Abstract: A scanning probe microscope method and apparatus that modifies imaging dynamics using an active drive technique to optimize the bandwidth of amplitude detection. The deflection is preferably measured by an optical detection system including a laser and a photodetector, which measures cantilever deflection by an optical beam bounce technique or another conventional technique. The detected deflection of the cantilever is subsequently demodulated to give a signal proportional to the amplitude of oscillation of the cantilever, which is thereafter used to drive the cantilever.
    Type: Grant
    Filed: January 6, 2004
    Date of Patent: May 2, 2006
    Assignee: Veeco Instruments Inc.
    Inventors: Dennis M. Adderton, Stephen C. Minne
  • Patent number: 7017398
    Abstract: An AFM that combines an AFM Z position actuator and a self-actuated Z position cantilever (both operable in cyclical mode and contact mode), with appropriate nested feedback control circuitry to achieve high-speed imaging and accurate Z position measurements. A preferred embodiment of an AFM for analyzing a surface of a sample in either ambient air or fluid includes a self-actuated cantilever having a Z-positioning element integrated therewith and an oscillator that oscillates the self-actuated cantilever at a frequency generally equal to a resonant frequency of the self-actuated cantilever and at an oscillation amplitude generally equal to a setpoint value.
    Type: Grant
    Filed: October 15, 2004
    Date of Patent: March 28, 2006
    Assignee: Veeco Instruments Inc.
    Inventors: Dennis M. Adderton, Stephen C. Minne
  • Patent number: 6951143
    Abstract: According to a first aspect of the preferred embodiment, a three-axis sensor assembly for use in an elastomeric material includes a first pair of sensors disposed along a first pair of respective axes that intersect, the first sensors being adapted to detect a force in a first direction. In addition, the sensor assembly includes a second pair of sensors disposed along a second pair of respective axes that intersect, the second sensors detecting a force in a second direction generally orthogonal to the first direction. Furthermore, in the assembly, the force measured in the first direction is equal to the difference between the outputs of the first sensors, and the force measured in the second direction is equal to the difference between the outputs of said second sensors. According to another aspect of the preferred embodiment, the sum of the outputs of the first sensors and the second sensors equals a force in a third direction orthogonal to the first and second directions.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: October 4, 2005
    Assignee: Michelin Recherche et Technique S.A.
    Inventors: Dennis M. Adderton, Stephen C. Minne
  • Patent number: 6941823
    Abstract: A method to compensate for stress deflection in a compound microprobe that includes a substrate, a microcantilever extending outwardly from the substrate, and a film formed on the microcantilever. The method preferably comprises the steps of determining an amount of stress-induced deflection of the microcantilever, and then mounting the microprobe so as to compensate for the stress-induced deflection. The mounting step preferably includes selecting a compensation piece based upon the amount of stress-induced deflection, where the compensation piece is a wedge generally aligning the microcantilever with a deflection detection apparatus. In general, the step of selecting the compensation piece includes correcting an angle between a longitudinal axis of the microcantilever and the substrate so as to insure that light reflected from the microcantilever during operation contacts a detector of a deflection detection apparatus.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: September 13, 2005
    Assignee: Veeco Instruments Inc.
    Inventors: Jonathan W. Lai, Hector B. Cavazos, Stephen C. Minne, Dennis M. Adderton
  • Patent number: 6912893
    Abstract: A method of operating a probe-based instrument includes providing a probe assembly and a probe holder and oscillating a probe of the probe assembly with an actuator that generates oscillation energy. The method also includes mounting the probe assembly on the probe holder so as to lessen interference with the oscillation energy coupled to the tip of the probe. A corresponding probe assembly includes a base having two substantially opposed surfaces and a cantilever extending from the base and supporting a tip. The probe assembly is mounted in a probe holder such that a probe holder surface contacts one of the opposed surfaces. The one opposed surface preferably includes at least one opening such that the surface area of the one opposed surface is substantially less than the surface area of the probe holder surface.
    Type: Grant
    Filed: April 17, 2003
    Date of Patent: July 5, 2005
    Assignee: Veeco Instruments Inc.
    Inventors: Stephen C. Minne, Hector B. Cavazos
  • Patent number: 6886395
    Abstract: A method of making a probe having a cantilever and a tip include providing a substrate having a surface and forming a tip extending substantially orthogonally from the surface. The method includes depositing an etch stop layer on the substrate, whereby the etch stop layer protects the tip during process. A silicon nitride layer is then deposited on the etch stop layer. An etch operation is used to release the cantilever and expose the etch stop layer protecting the tip. Preferably, the tip is silicon and the cantilever supporting the tip, preferably via the etch stop layer, is silicon nitride. A probe for a surface analysis instrument made according to the method includes a tip and a silicon nitride cantilever having a thickness defined during the deposition process.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: May 3, 2005
    Assignee: Veeco Instruments Inc.
    Inventor: Stephen C. Minne