Patents by Inventor Stephen Forrest

Stephen Forrest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7375370
    Abstract: A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength ?1 and a second photoactive region having a characteristic absorption wavelength ?2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that ?1 is at least about 10% different from ?2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
    Type: Grant
    Filed: November 3, 2004
    Date of Patent: May 20, 2008
    Assignee: The Trustees of Princeton University
    Inventors: Stephen Forrest, Jiangeng Xue, Soichi Uchida, Barry P. Rand
  • Patent number: 7373048
    Abstract: A polarization insensitive semiconductor optical amplifier (SOA) is provided. The SOA includes an active waveguide, a passive waveguide, and a taper coupler for coupling optical energy from the passive waveguide into the active waveguide, wherein the taper coupler has width W varying relative to position along a main axis z of propagation of the SOA in proportion to the minimum value of 1/CTE 01(z) 1/CTM 01(z), where CTE 01(z) represents the coefficient of energy coupling between a fundamental mode and a first order mode for the transverse electric polarization as a function of the position z, and CTM 01(z) represents the coefficient of energy coupling between a fundamental mode and a first order mode for the transverse magnetic polarization as a function of the position z.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: May 13, 2008
    Assignee: Trustees of Princeton University
    Inventors: Fengnian Xia, Stephen Forrest
  • Publication number: 20080099068
    Abstract: A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength ?1 and a second photoactive region having a characteristic absorption wavelength ?2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that ?1 is at least about 10% different from ?2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
    Type: Application
    Filed: March 26, 2007
    Publication date: May 1, 2008
    Inventors: Stephen Forrest, Jiangeng Xue, Soichi Uchida, Barry P. Rand
  • Publication number: 20080102310
    Abstract: The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.
    Type: Application
    Filed: October 27, 2006
    Publication date: May 1, 2008
    Inventors: Mark E. Thompson, Stephen Forrest
  • Publication number: 20080067530
    Abstract: A device comprising an organic light emitting layer may be optically pumped to create excited states within the layer. When an electric field is applied across the layer, the excited states may dissociate into geminate polaron pairs within the organic layer. The dissociated states may change back to excitons when the electric field is rapidly reduced or removed. The organic light emitting layer may be optically pumped by an adjacent OLED, allowing for an electrically-driven device.
    Type: Application
    Filed: August 29, 2006
    Publication date: March 20, 2008
    Inventors: Stephen Forrest, Noel Giebink
  • Publication number: 20080061681
    Abstract: Certain iridium compounds which may comprise an iridium(III)-ligand complex having the general formula: (C?N)2—Ir—(N?N). (C?N) and (N?N) may each represent a ligand coordinated to an iridium atom. The iridium compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-infrared (IR) range. Also, organic devices that use certain iridium compounds. The organic device may comprise an organic layer and the organic layer may comprise any of the iridium compounds disclosed herein. Also, organic devices that use certain metalloporphyrin compounds. The metalloporphyrin compounds may comprise a core porphyrin structure with four pyrrole rings. The metalloporphyrin compounds may have a primary phosphorescent photoluminescence peak wavelength in the near-IR range.
    Type: Application
    Filed: September 11, 2006
    Publication date: March 13, 2008
    Applicants: The Trustees of Princeton University, The Regents of the University of Michigan, The University of Southern California
    Inventors: Mark E. Thompson, Carsten Borek, Kenneth Hanson, Peter Djurovich, Yiru Sun, Stephen Forrest
  • Patent number: 7326955
    Abstract: A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength ?1 and a second photoactive region having a characteristic absorption wavelength ?2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that ?1 is at least about 10% different from ?2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: February 5, 2008
    Assignee: The Trustees of Princeton University
    Inventors: Stephen Forrest, Jiangeng Xue, Soichi Uchida, Barry P. Rand
  • Publication number: 20080024058
    Abstract: Organic light emitting devices are Disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound.
    Type: Application
    Filed: July 23, 2007
    Publication date: January 31, 2008
    Inventors: Mark Thompson, Yujian You, Andrei Shoustikov, Scott Sibley, Paul Burrows, Stephen Forrest
  • Publication number: 20080025681
    Abstract: A photoactive fiber is provided, as well as a method of fabricating such a fiber. The fiber has a conductive core including a first electrode. An organic layer surrounds and is electrically connected to the first electrode. A transparent second electrode surrounds and is electrically connected to the organic layer. Other layers, such as blocking layers or smoothing layers, may also be incorporated into the fiber. The fiber may be woven into a cloth.
    Type: Application
    Filed: March 19, 2007
    Publication date: January 31, 2008
    Inventors: Max Shtein, Stephen Forrest
  • Publication number: 20080001144
    Abstract: A photosensitive cell includes an anode and a cathode; a donor-type organic material and an acceptor-type organic material forming a donor-acceptor junction connected between the anode and the cathode; and an exciton blocking layer connected between the acceptor-type organic material of the donor-acceptor junction and the cathode, the blocking layer consisting essentially of a material that has a hole mobility of at least 10?7 cm2/V-sec or higher, where a HOMO of the blocking layer is higher than or equal to a HOMO of the acceptor-type material.
    Type: Application
    Filed: June 6, 2007
    Publication date: January 3, 2008
    Inventors: Barry Rand, Stephen Forrest, Mark Thompson
  • Patent number: 7314773
    Abstract: A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the r
    Type: Grant
    Filed: August 17, 2005
    Date of Patent: January 1, 2008
    Assignee: The Trustees of Princeton University
    Inventors: Stephen Forrest, Jiangeng Xue
  • Publication number: 20070296332
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Application
    Filed: July 16, 2007
    Publication date: December 27, 2007
    Inventors: Mark Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen Forrest, Marc Baldo, Paul Burrows
  • Publication number: 20070290195
    Abstract: A photosensitive device includes a first organic material and a second organic material forming a donor-acceptor heterojunction electrically connected between an anode and a cathode, where the first organic material and second organic material each have a Franck-Condon Shift of less than 0.5 eV. Preferably, one or both of the first organic material and the second organic material have Franck-Condon Shifts of less than 0.2 eV, or better yet, less than 0.1 eV.
    Type: Application
    Filed: August 22, 2005
    Publication date: December 20, 2007
    Inventor: Stephen Forrest
  • Publication number: 20070278937
    Abstract: The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).
    Type: Application
    Filed: June 5, 2006
    Publication date: December 6, 2007
    Inventors: Stephen Forrest, Hiroshi Kanno
  • Publication number: 20070272918
    Abstract: An organic photosensitive optoelectronic device, having a donor-acceptor heterojunction of a donor-like material and an acceptor-like material and methods of making such devices is provided. At least one of the donor-like material and the acceptor-like material includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound; and/or the device optionally has at least one of a blocking layer or a charge transport layer, where the blocking layer and/or the charge transport layer includes a subphthalocyanine, a subporphyrin, and/or a subporphyrazine compound.
    Type: Application
    Filed: May 25, 2006
    Publication date: November 29, 2007
    Inventors: Barry Rand, Stephen Forrest, Kristin Mutolo, Elizabeth Mayo, Mark Thompson
  • Patent number: 7294849
    Abstract: An OLED includes a wide gap inert host material doped with two dopants. One of the dopants is an emissive phosphorescent material that can transport either electrons or holes. The other dopant is a charge carrying material that can transport whichever of the electrons and holes that is not transported by the phosphorescent dopant. The materials are selected so that the lowest triplet energy level of the host material and the lowest triplet energy level of the charge carrying dopant material are each at a higher energy level than the lowest triplet state energy level of the phosphorescent dopant material. The device is capable, in particular, of efficiently emitting light in the blue region of the visible spectrum.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: November 13, 2007
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Stephen Forrest
  • Publication number: 20070215868
    Abstract: A photosensitive device includes a plurality of organic photoconductive materials disposed in a stack between a first electrode and a second electrode, including a first continuous layer of donor host material, a second continuous layer of acceptor host material, and at least one other organic photoconductive material disposed as a plurality of discontinuous islands between the first continuous layer and the second continuous layer. Each of these other photoconductive materials has an absorption spectra different from the donor host material and the acceptor host material. Preferably, each of the discontinuous islands consists essentially of a crystallite of the respective organic photoconductive material, and more preferably, the crystallites are nanocrystals.
    Type: Application
    Filed: December 1, 2006
    Publication date: September 20, 2007
    Inventors: Stephen Forrest, Fan Yang, Barry Rand
  • Publication number: 20070178619
    Abstract: A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the r
    Type: Application
    Filed: August 17, 2005
    Publication date: August 2, 2007
    Inventors: Stephen Forrest, Jiangeng Xue
  • Publication number: 20070176165
    Abstract: The present invention is directed to organic photosensitive optoelectronic devices and methods of use for determining the position of a light source. Provided is an organic position sensitive detector (OPSD) comprising: a first electrode, which is resistive and may be either an anode or a cathode; a first contact in electrical contact with the first electrode; a second contact in electrical contact with the first electrode; a second electrode disposed near the first electrode; a donor semiconductive organic layer disposed between the first electrode and the second electrode; and an acceptor semiconductive organic layer disposed between the first electrode and the second electrode and adjacent to the donor semiconductive organic layer. A hetero-junction is located between the donor layer and the acceptor layer, and at least one of the donor layer and the acceptor layer is light absorbing.
    Type: Application
    Filed: September 1, 2005
    Publication date: August 2, 2007
    Inventors: Stephen Forrest, Barry Rand, Michael Lange
  • Publication number: 20070162263
    Abstract: A plurality of quantum dots each have a shell. The quantum dots are embedded in an organic matrix. At least the quantum dots and the organic matrix are photoconductive semiconductors. The shell of each quantum dot is arranged as a tunneling barrier to require a charge carrier (an electron or a hole) at a base of the tunneling barrier in the organic matrix to perform quantum mechanical tunneling to reach the respective quantum dot. A first quantum state in each quantum dot is between a lowest unoccupied molecular orbital (LUMO) and a highest occupied molecular orbital (HOMO) of the organic matrix. Wave functions of the first quantum state of the plurality of quantum dots may overlap to form an intermediate band.
    Type: Application
    Filed: December 16, 2005
    Publication date: July 12, 2007
    Inventor: Stephen Forrest