Patents by Inventor Stephen J. Colavito

Stephen J. Colavito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040016812
    Abstract: Disclosed is an automatically-activated wireless code symbol reading system comprising a bar code symbol reading mechanism contained within a hand-supportable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner.
    Type: Application
    Filed: January 12, 2003
    Publication date: January 29, 2004
    Applicant: Metrologic Instruments, Inc.
    Inventors: Mark Schmidt, Garrett Russell, David M. Wilz, Robert Blake, Donald T. Hudrick, Stephen J. Colavito, C. Harry Knowles, George Rockstein, Xiaoxun Zhu, John Bonanno, Sung Byun, Congwei Xu, Ming Jiang, Lin Wang, Meng Hu, Hongjian Jin, MingQing Ji, Shamei Shi, Ka Man Au, Patrick Giordano
  • Publication number: 20030234290
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Application
    Filed: September 2, 2003
    Publication date: December 25, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Thomas Amundsen, Gennady Germaine, Andrew D. Dehennis, LeRoy Dickson, Carl Harry Knowles
  • Publication number: 20030218070
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 27, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030178491
    Abstract: Disclosed is laser beam scanning apparatus in the form of an electronically-controlled mechanically-damped off-resonant laser beam scanning mechanism. The scanning mechanism comprises an etched scanning element having a small flexible gap region of closely-controlled dimensions disposed between an anchored base portion and a laser beam deflecting portion The light beam deflecting portion supports a permanent magnet and a light beam deflecting element (e.g., mirror or hologram). A reversible magnetic force field producing device (e.g., an electromagnet) is placed in close proximity with the permanent magnet so that it may be forcibly driven into oscillation in response to electrical current flowing through the electromagnet. The resonant frequency of oscillation of the laser beam deflecting portion relative to the anchored base portion is determined by the closely controlled dimensions of the flexible gap region set during manufacture.
    Type: Application
    Filed: March 13, 2001
    Publication date: September 25, 2003
    Inventors: Robert E. Blake, Charles A. Naylor, Stephen J. Colavito, Thomas Amundsen, Thomas Carullo, C. Harry Knowles
  • Patent number: 6619550
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: May 5, 1999
    Date of Patent: September 16, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, LeRoy Dickson, Francis Lodge, Xiaoxun Zhu, David M. Wilz, George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Thomas Amundsen, Gennady Germaine, Andrew D. Dehennis, Carl Harry Knowles
  • Patent number: 6616048
    Abstract: A fully automated package identification and measuring system in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol hereon. The mathematical models area analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogenous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: February 14, 2002
    Date of Patent: September 9, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Andrew D. Dehennis, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, George Kolis, C. Harry Knowles
  • Publication number: 20030146282
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 6, 2002
    Publication date: August 7, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles
  • Patent number: 6595420
    Abstract: Disclosed is an automatically-activated body-wearable code symbol reading system comprising a bar code symbol reading mechanism contained within a body-wearable housing having a manually-activatable data transmission switch. During symbol reading operations, the bar code symbol reading mechanism automatically generates a visible laser scanning pattern for repeatedly reading one or more bar code symbols on an object during a bar code symbol reading cycle, and automatically generating a new symbol character data string in response to each bar code symbol read thereby. During system operation, the user visually aligns the visible laser scanning pattern with a particular bar code symbol on an object (e.g. product, bar code menu, etc.) so that the bar code symbol is scanned, detected and decoded in a cyclical manner.
    Type: Grant
    Filed: December 2, 1999
    Date of Patent: July 22, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: David M. Wilz, Sr., George B. Rockstein, Robert E. Blake, Mark Schmidt, Garrett Russell, Donald T. Hudrick, Stephen J. Colavito, Carl Harry Knowles
  • Publication number: 20030080192
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: June 6, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030080190
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: May 23, 2002
    Publication date: May 1, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6554189
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: January 24, 2000
    Date of Patent: April 29, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Thomas Amundsen, Gennady Germaine, Andrew D. Dehennis, LeRoy Dickson, Carl Harry Knowles
  • Publication number: 20030071124
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 30, 2002
    Publication date: April 17, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030052175
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 23, 2002
    Publication date: March 20, 2003
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Publication number: 20030042308
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 5, 2002
    Publication date: March 6, 2003
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles
  • Publication number: 20030034395
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith, The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: April 23, 2002
    Publication date: February 20, 2003
    Applicant: Metrologic Instruments, Inc.
    Inventors: Constantine J. Tsikos, C. Harry Knowles, Xiaoxun Zhu, Michael D. Schnee, Ka Man Au, Allan Wirth, Timothy A. Good, Andrew Jankevics, Sankar Ghosh, Charles A. Naylor, Thomas Amundsen, Robert Blake, William Svedas, Shawn Defoney, Edward Skypala, Pirooz Vatan, Russell Joseph Dobbs, George Kolis, Mark C. Schmidt, Jeffery Yorsz, Patrick A. Giordano, Stephen J. Colavito, David W. Wilz,, Barry E. Schwartz, Steven Y. Kim, Dale Fisher, Jon Van Tassell
  • Patent number: 6517004
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Grant
    Filed: September 21, 1998
    Date of Patent: February 11, 2003
    Assignee: Metrologic Instruments, Inc.
    Inventors: Timothy A. Good, Andrew D. Dehennis, Xiaoxun Zhu, David M. Wilz, Sr., George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, George Kolis, C. Harry Knowles
  • Publication number: 20030006289
    Abstract: A fully automated package identification and measuring system in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol hereon. The mathematical models area analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogenous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Application
    Filed: February 14, 2002
    Publication date: January 9, 2003
    Inventors: Timothy A. Good, Andrew D. Dehennis, Xiaoxun Zhu, David M. Wilz, George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, George Kolis, C. Harry Knowles
  • Publication number: 20020179716
    Abstract: A fully automated package identification and measuring system, in which an omni-directional holographic scanning tunnel is used to read bar codes on packages entering the tunnel, while a package dimensioning subsystem is used to capture information about the package prior to entry into the tunnel. Mathematical models are created on a real-time basis for the geometry of the package and the position of the laser scanning beam used to read the bar code symbol thereon. The mathematical models are analyzed to determine if collected and queued package identification data is spatially and/or temporally correlated with package measurement data using vector-based ray-tracing methods, homogeneous transformations, and object-oriented decision logic so as to enable simultaneous tracking of multiple packages being transported through the scanning tunnel.
    Type: Application
    Filed: February 19, 2002
    Publication date: December 5, 2002
    Inventors: Timothy A. Good, Xiaoxun Zhu, David M. Wilz, George B. Rockstein, Stephen J. Colavito, Robert E. Blake, Ka Man Au, Sankar Ghosh, George Kolis, Ian A. Scott, Andrew D. Dehennis, Thomas Amundsen, LeRoy Dickson, Carl Harry Knowles
  • Publication number: 20020170968
    Abstract: A bar code symbol reading system is disclosed comprising a hand-supportable bar code symbol reading device which embodies an electronically-controlled bar code symbol reading engine for producing a raster-type laser scanning pattern in either a hands-free or hands-on mode of operation for scanning 1-D and 2D bar code symbols. The electronically-controlled bar code symbol reading engine has (i) a high-speed/high-resolution raster scanning mode of operation, during which a high-speed, high-resolution raster-type scanning pattern is precisely generated under electronic control, and (ii) a high-speed/low-resolution raster scanning mode of operation during which a high-speed, low-resolution raster-type scanning pattern is precisely generated under electronic control.
    Type: Application
    Filed: November 28, 2001
    Publication date: November 21, 2002
    Applicant: Metrologic Instruments, Inc.
    Inventors: Robert E. Blake, Stephen J. Colavito, Xiaoxun Zhu, Charles Naylor, Thomas C. Amundsen, Thomas Carullo, C. Harry Knowles
  • Publication number: 20020153422
    Abstract: Methods of and systems for illuminating objects using planar laser illumination beams having substantially-planar spatial distribution characteristics that extend through the field of view (FOV) of image formation and detection modules employed in such systems. Each planar laser illumination beam is produced from a planar laser illumination beam array (PLIA) comprising an plurality of planar laser illumination modules (PLIMs). Each PLIM comprises a visible laser diode (VLD, a focusing lens, and a cylindrical optical element arranged therewith. The individual planar laser illumination beam components produced from each PLIM are optically combined to produce a composite substantially planar laser illumination beam having substantially uniform power density characteristics over the entire spatial extend thereof and thus the working range of the system.
    Type: Application
    Filed: February 1, 2002
    Publication date: October 24, 2002
    Inventors: Constantine J. Tsikos, Allan Wirth, Timothy A. Good, Andrew Jankevics, Steve Y. Kim, Thomas Amundsen, Charles A. Naylor, Russell Joseph Dobbs, Patrick A. Giordano, Jeffery Yorsz, Mark S. Schmidt, Stephen J. Colavito, David M. Wilz, Ka Man Au, William Svedas, Sankar Ghosh, Michael D. Schnee, Xiaoxun Zhu, C. Harry Knowles