Patents by Inventor Stephen M. Cea

Stephen M. Cea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250107174
    Abstract: Neighboring gate-all-around integrated circuit structures having a conductive contact stressor between epitaxial source or drain regions are described. In an example, a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening conductive contact structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures. The intervening conductive contact structure imparts a stress to the neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Application
    Filed: December 11, 2024
    Publication date: March 27, 2025
    Inventors: Siddharth CHOUKSEY, Jack T. KAVALIEROS, Stephen M. CEA, Ashish AGRAWAL, Willy RACHMADY
  • Patent number: 12243875
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Grant
    Filed: January 10, 2024
    Date of Patent: March 4, 2025
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
  • Patent number: 12199098
    Abstract: Fin doping, and integrated circuit structures resulting therefrom, are described. In an example, an integrated circuit structure includes a semiconductor fin. A lower portion of the semiconductor fin includes a region having both N-type dopants and P-type dopants with a net excess of the P-type dopants of at least 2E18 atoms/cm3. A gate stack is over and conformal with an upper portion of the semiconductor fin. A first source or drain region is at a first side of the gate stack, and a second source or drain region is at a second side of the gate stack opposite the first side of the gate stack.
    Type: Grant
    Filed: March 24, 2021
    Date of Patent: January 14, 2025
    Assignee: Intel Corporation
    Inventors: Aaron D. Lilak, Cory Weber, Stephen M. Cea, Leonard C. Pipes, Seahee Hwangbo, Rishabh Mehandru, Patrick Keys, Jack Yaung, Tzu-Min Ou
  • Patent number: 12199142
    Abstract: Neighboring gate-all-around integrated circuit structures having a conductive contact stressor between epitaxial source or drain regions are described. In an example, a first vertical arrangement of nanowires and a second vertical arrangement of nanowires above a substrate. A first gate stack is over the first vertical arrangement of nanowires. A second gate stack is over the second vertical arrangement of nanowires. First epitaxial source or drain structures are at ends of the first vertical arrangement of nanowires. Second epitaxial source or drain structures are at ends of the second vertical arrangement of nanowires. An intervening conductive contact structure is between neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures. The intervening conductive contact structure imparts a stress to the neighboring ones of the first epitaxial source or drain structures and of the second epitaxial source or drain structures.
    Type: Grant
    Filed: December 23, 2020
    Date of Patent: January 14, 2025
    Assignee: Intel Corporation
    Inventors: Siddharth Chouksey, Jack T. Kavalieros, Stephen M. Cea, Ashish Agrawal, Willy Rachmady
  • Patent number: 12142634
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods include forming a nanowire device comprising a substrate comprising source/drain structures adjacent to spacers, and nanowire channel structures disposed between the spacers, wherein the nanowire channel structures are vertically stacked above each other.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: November 12, 2024
    Assignee: Sony Group Corporation
    Inventors: Kelin J. Kuhn, Seiyon Kim, Rafael Rios, Stephen M. Cea, Martin D. Giles, Annalisa Cappellani, Titash Rakshit, Peter Chang, Willy Rachmady
  • Publication number: 20240355682
    Abstract: Embodiments of the present disclosure are based on extending a nanocomb transistor architecture to implement gate all around, meaning that a gate enclosure of at least a gate dielectric material, or both a gate dielectric material and a gate electrode material, is provided on all sides of each nanoribbon of a vertical stack of lateral nanoribbons of a nanocomb transistor arrangement. In particular, extension of a nanocomb transistor architecture to implement gate all around, proposed herein, involves use of two dielectric wall materials which are etch-selective with respect to one another, instead of using only a single dielectric wall material used to implement conventional nanocomb transistor arrangements. Nanocomb-based transistor arrangements implementing gate all around as described herein may provide improvements in terms of the short-channel effects of conventional nanocomb transistor arrangements.
    Type: Application
    Filed: July 2, 2024
    Publication date: October 24, 2024
    Applicant: Intel Corporation
    Inventors: Varun Mishra, Stephen M. Cea, Cory E. Weber, Jack T. Kavalieros, Tahir Ghani
  • Publication number: 20240355903
    Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, are described. In an example, an integrated circuit structure includes includes a semiconductor nanowire above an insulator substrate and having a length in a first direction. A gate structure is around the semiconductor nanowire, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included. The first of the pair of gate endcap isolation structures is directly adjacent to the first end of the gate structure, and the second of the pair of gate endcap isolation structures is directly adjacent to the second end of the gate structure.
    Type: Application
    Filed: July 3, 2024
    Publication date: October 24, 2024
    Inventors: Biswajeet GUHA, Dax M. CRUM, Stephen M. CEA, Leonard P. GULER, Tahir GHANI
  • Patent number: 12125916
    Abstract: Nanowire structures having non-discrete source and drain regions are described. For example, a semiconductor device includes a plurality of vertically stacked nanowires disposed above a substrate. Each of the nanowires includes a discrete channel region disposed in the nanowire. A gate electrode stack surrounds the plurality of vertically stacked nanowires. A pair of non-discrete source and drain regions is disposed on either side of, and adjoining, the discrete channel regions of the plurality of vertically stacked nanowires.
    Type: Grant
    Filed: December 14, 2022
    Date of Patent: October 22, 2024
    Assignee: Google LLC
    Inventors: Stephen M. Cea, Annalisa Cappellani, Martin D. Giles, Rafael Rios, Seiyon Kim, Kelin J. Kuhn
  • Patent number: 12100623
    Abstract: Stacked finFET structures including a fin having at least a first layer of semiconductor material stacked over or under a second layer of semiconductor material. The first and second layers may include a Group IV semiconductor material layer and a Group III-V semiconductor material layer, for example. A stacked finFET may include an N-type finFET stacked over or under a P-type finFET, the two finFETs may have channel portions within the different semiconductor material layers. Channel portions of the first and second layers of semiconductor material may be coupled to separate gate electrodes that are vertically aligned. Channel portions of the first and second layers of semiconductor material may be vertically separated by subfin portions of the first and second layers. Different layers of dielectric material adjacent to the subfin portions may improve electrical isolation between the channel portions, for example as a source of fixed charge or impurity dopants.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: September 24, 2024
    Assignee: Intel Corporation
    Inventors: Aaron Lilak, Sean Ma, Justin R. Weber, Rishabh Mehandru, Stephen M. Cea, Patrick Morrow, Patrick H. Keys
  • Publication number: 20240304621
    Abstract: Fabrication method for nanoribbon-based transistors and associated transistor arrangements, IC structures, and devices are disclosed. An example fabrication method is based on patterning a foundation over which a superlattice is provided so that a single superlattice may be used to form both PMOS and NMOS stacks of nanoribbons. An example IC structure includes a support, an NMOS stack of nanoribbons stacked vertically above one another over the support, and a PMOS stack of nanoribbons stacked vertically above one another over the support, wherein at least one of the nanoribbons of the NMOS stack is vertically offset with respect to at least one of the nanoribbons of the PMOS stack.
    Type: Application
    Filed: March 10, 2023
    Publication date: September 12, 2024
    Applicant: Intel Corporation
    Inventors: Chiao-Ti Huang, Tao Chu, Robin Chao, Guowei Xu, Feng Zhang, Biswajeet Guha, Stephen M. Cea
  • Patent number: 12068206
    Abstract: Embodiments of the present disclosure are based on extending a nanocomb transistor architecture to implement gate all around, meaning that a gate enclosure of at least a gate dielectric material, or both a gate dielectric material and a gate electrode material, is provided on all sides of each nanoribbon of a vertical stack of lateral nanoribbons of a nanocomb transistor arrangement. In particular, extension of a nanocomb transistor architecture to implement gate all around, proposed herein, involves use of two dielectric wall materials which are etch-selective with respect to one another, instead of using only a single dielectric wall material used to implement conventional nanocomb transistor arrangements. Nanocomb-based transistor arrangements implementing gate all around as described herein may provide improvements in terms of the short-channel effects of conventional nanocomb transistor arrangements.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: August 20, 2024
    Assignee: Intel Corporation
    Inventors: Varun Mishra, Stephen M. Cea, Cory E. Weber, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 12057491
    Abstract: Self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, and methods of fabricating self-aligned gate endcap (SAGE) architectures with gate-all-around devices above insulator substrates, are described. In an example, an integrated circuit structure includes a semiconductor nanowire above an insulator substrate and having a length in a first direction. A gate structure is around the semiconductor nanowire, the gate structure having a first end opposite a second end in a second direction, orthogonal to the first direction. A pair of gate endcap isolation structures is included. The first of the pair of gate endcap isolation structures is directly adjacent to the first end of the gate structure, and the second of the pair of gate endcap isolation structures is directly adjacent to the second end of the gate structure.
    Type: Grant
    Filed: January 3, 2019
    Date of Patent: August 6, 2024
    Assignee: Intel Corporation
    Inventors: Biswajeet Guha, Dax M. Crum, Stephen M. Cea, Leonard P. Guler, Tahir Ghani
  • Publication number: 20240186398
    Abstract: Integrated circuit structures having cavity spacers, and methods of fabricating integrated circuit structures having cavity spacers, are described. For example, an integrated circuit structure includes a sub-fin structure over a stack of nanowires. A gate structure is vertically around the stack of nanowires. An internal gate spacer is between vertically adjacent ones of the nanowires and adjacent to the gate structure. A trench contact structure is laterally adjacent to a side of the gate structure. A cavity spacer is laterally between the gate structure and the trench contact structure.
    Type: Application
    Filed: December 1, 2022
    Publication date: June 6, 2024
    Inventors: Aaron D. LILAK, Anh PHAN, Rishabh MEHANDRU, Stephen M. CEA, Patrick MORROW, Jack T. KAVALIEROS, Justin WEBER, Salim BERRADA
  • Publication number: 20240153956
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Application
    Filed: January 10, 2024
    Publication date: May 9, 2024
    Inventors: Seung Hoon SUNG, Cheng-Ying HUANG, Marko RADOSAVLJEVIC, Christopher M. NEUMANN, Susmita GHOSE, Varun MISHRA, Cory WEBER, Stephen M. CEA, Tahir GHANI, Jack T. KAVALIEROS
  • Publication number: 20240105716
    Abstract: Integrated circuit structures having uniform grid metal gate and trench contact cut, and methods of fabricating integrated circuit structures having uniform grid metal gate and trench contact cut, are described. For example, an integrated circuit structure includes a vertical stack of horizontal nanowires. A gate electrode is over the vertical stack of horizontal nanowires. A conductive trench contact is adjacent to the gate electrode. A dielectric sidewall spacer is between the gate electrode and the conductive trench contact. A first dielectric cut plug structure extends through the gate electrode, through the dielectric sidewall spacer, and through the conductive trench contact. A second dielectric cut plug structure extends through the gate electrode, through the dielectric sidewall spacer, and through the conductive trench contact, the second dielectric cut plug structure laterally spaced apart from and parallel with the first dielectric cut plug structure.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 28, 2024
    Inventors: Leonard P. GULER, Sukru YEMENICIOGLU, Mohit K. HARAN, Stephen M. CEA, Charles H. WALLACE, Tahir GHANI, Shengsi LIU, Saurabh ACHARYA, Thomas O'BRIEN, Nidhi KHANDELWAL, Marie T. CONTE, Prabhjot LUTHRA
  • Patent number: 11923370
    Abstract: Embodiments disclosed herein include forksheet transistor devices having a dielectric or a conductive spine. For example, an integrated circuit structure includes a dielectric spine. A first transistor device includes a first vertical stack of semiconductor channels spaced apart from a first edge of the dielectric spine. A second transistor device includes a second vertical stack of semiconductor channels spaced apart from a second edge of the dielectric spine. An N-type gate structure is on the first vertical stack of semiconductor channels, a portion of the N-type gate structure laterally between and in contact with the first edge of the dielectric spine and the first vertical stack of semiconductor channels. A P-type gate structure is on the second vertical stack of semiconductor channels, a portion of the P-type gate structure laterally between and in contact with the second edge of the dielectric spine and the second vertical stack of semiconductor channels.
    Type: Grant
    Filed: September 23, 2020
    Date of Patent: March 5, 2024
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Cheng-Ying Huang, Marko Radosavljevic, Christopher M. Neumann, Susmita Ghose, Varun Mishra, Cory Weber, Stephen M. Cea, Tahir Ghani, Jack T. Kavalieros
  • Publication number: 20230317822
    Abstract: Embodiments described herein may be related to transistor structures where dimpled spacers, which may also be referred to as inner spacers or offset spacers, may be formed around gates within an epitaxial structure such that the epitaxial material adjacent to the dimpled spacer is uniform and/or defect free. In embodiments, forming the dimpled spacers occurs after epitaxial growth. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: April 1, 2022
    Publication date: October 5, 2023
    Inventors: Stephen M. CEA, Borna OBRADOVIC, Rishabh MEHANDRU, Jack T. KAVALIEROS
  • Patent number: 11757026
    Abstract: Nanowire structures having wrap-around contacts are described. For example, a nanowire semiconductor device includes a nanowire disposed above a substrate. A channel region is disposed in the nanowire. The channel region has a length and a perimeter orthogonal to the length. A gate electrode stack surrounds the entire perimeter of the channel region. A pair of source and drain regions is disposed in the nanowire, on either side of the channel region. Each of the source and drain regions has a perimeter orthogonal to the length of the channel region. A first contact completely surrounds the perimeter of the source region. A second contact completely surrounds the perimeter of the drain region.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: September 12, 2023
    Assignee: Google LLC
    Inventors: Stephen M. Cea, Cory E. Weber, Patrick H. Keys, Seiyon Kim, Michael G. Haverty, Sadasivan Shankar
  • Publication number: 20230275085
    Abstract: Techniques are provided herein to form an integrated circuit having a grid of gate cut structures such that a gate cut structure exists between pairs of semiconductor devices. In an example, neighboring semiconductor devices each include a semiconductor region extending between a source region and a drain region, and a gate structure extending over the semiconductor regions of the neighboring semiconductor devices. A gate cut structure is present between each pair of neighboring semiconductor devices thus interrupting the gate structure and isolating the gate of one semiconductor device from the gate of the other semiconductor device. Each of the gate cut structures may be formed at the same time in a grid-like pattern across the integrated circuit (or a portion thereof). Sidewall spacer structures on the sidewalls of the gate structure wrap around ends of each gate structure to form a given gate cut structure.
    Type: Application
    Filed: February 28, 2022
    Publication date: August 31, 2023
    Applicant: Intel Corporation
    Inventors: Leonard P. Guler, Sukru Yemenicioglu, Mohit K. Haran, Shengsi Liu, Robert Joachim, Dan S. Lavric, Stephen M. Cea
  • Patent number: 11705518
    Abstract: Isolation schemes for gate-all-around (GAA) transistor devices are provided herein Integrated circuit structures including increased transistor source/drain contact area using a sacrificial source/drain layer are provided herein. In some cases, the isolation schemes include changing the semiconductor nanowires/nanoribbons in a targeted channel region between active or functional transistor devices to electrically isolate those active devices. The targeted channel region is referred to herein as a dummy channel region, as it is not used as an actual channel region for an active or functional transistor device. The semiconductor nanowires/nanoribbons in the dummy channel region can be changed by converting them to an electrical insulator and/or by adding dopant that is opposite in type relative to surrounding source/drain material (to create a p-n junction).
    Type: Grant
    Filed: April 15, 2022
    Date of Patent: July 18, 2023
    Assignee: Intel Corporation
    Inventors: Rishabh Mehandru, Stephen M. Cea, Biswajeet Guha, Tahir Ghani, William Hsu