Patents by Inventor Stephen Moffatt

Stephen Moffatt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110204045
    Abstract: The present invention generally relates to a thermal processing apparatus and method that permits a user to index one or more preselected light sources capable of emitting one or more wavelengths to a collimator. Multiple light sources may permit a single apparatus to have the capability of emitting multiple, preselected wavelengths. The multiple light sources permit the user to utilize multiple wavelengths simultaneously to approximate “white light”. One or more of a frequency, intensity, and time of exposure may be selected for the wavelength to be emitted. Thus, the capabilities of the apparatus and method are flexible to meet the needs of the user.
    Type: Application
    Filed: April 28, 2011
    Publication date: August 25, 2011
    Inventor: STEPHEN MOFFATT
  • Publication number: 20110199683
    Abstract: A method and apparatus for decorrelating coherent light from a light source, such as a pulsed laser, in both time and space in an effort to provide intense and uniform illumination are provided. The techniques and apparatus described herein may be incorporated into any application where intense, uniform illumination is desired, such as pulsed laser annealing, welding, ablating, and wafer stepper illuminating.
    Type: Application
    Filed: April 27, 2011
    Publication date: August 18, 2011
    Inventors: Dean Jennings, Timothy N. Thomas, Stephen Moffatt, Jiping Li, Bruce E. Adams, Samuel C. Howells
  • Publication number: 20110129959
    Abstract: A method and apparatus for forming a crystalline semiconductor layer on a substrate are provided. A semiconductor layer is formed by vapor deposition. A pulsed laser melt/recrystallization process is performed to convert the semiconductor layer to a crystalline layer. Laser, or other electromagnetic radiation, pulses are formed into a pulse train and uniformly distributed over a treatment zone, and successive neighboring treatment zones are exposed to the pulse train to progressively convert the deposited material to crystalline material.
    Type: Application
    Filed: November 23, 2010
    Publication date: June 2, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventor: Stephen Moffatt
  • Patent number: 7947584
    Abstract: The present invention generally relates to a thermal processing apparatus and method that permits a user to index one or more preselected light sources capable of emitting one or more wavelengths to a collimator. Multiple light sources may permit a single apparatus to have the capability of emitting multiple, preselected wavelengths. The multiple light sources permit the user to utilize multiple wavelengths simultaneously to approximate “white light”. One or more of a frequency, intensity, and time of exposure may be selected for the wavelength to be emitted. Thus, the capabilities of the apparatus and method are flexible to meet the needs of the user.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: May 24, 2011
    Assignee: Applied Materials, Inc.
    Inventor: Stephen Moffatt
  • Publication number: 20110070724
    Abstract: A method and apparatus for implanting a semiconductor substrate with boron clusters. A substrate is implanted with octadecaborane by plasma immersion or ion beam implantation. The substrate surface is then annealed to completely dissociate and activate the boron clusters. The annealing may take place by melting the implanted regions or by a sub-melt annealing process.
    Type: Application
    Filed: September 21, 2009
    Publication date: March 24, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Jiping Li, Aaron Muir Hunter, Bruce E. Adams, Theodore Moffitt, Stephen Moffatt
  • Publication number: 20110065264
    Abstract: Embodiments of the present invention provide methods of solid phase recrystallization of thin film using a plurality of pulses of electromagnetic energy. In one embodiment, the methods of the present invention may be used to anneal an entire substrate surface or selected regions of a surface of a substrate by delivering a plurality of pluses of energy to a crystalline seed region or layer upon which an amorphous layer is deposited to recrystallize the amorphous layer so that it has the same grain structure and crystal orientation as that of the underlying crystalline seed region or layer.
    Type: Application
    Filed: April 21, 2010
    Publication date: March 17, 2011
    Applicant: APPLIED MATERIALS, INC.
    Inventors: STEPHEN MOFFATT, Aaron Muir Hunter, Bruce E. Adams
  • Publication number: 20100323532
    Abstract: The present invention generally describes one ore more methods that are used to perform an annealing process on desired regions of a substrate. In one embodiment, an amount of energy is delivered to the surface of the substrate to preferentially melt certain desired regions of the substrate to remove unwanted damage created from prior processing steps (e.g., crystal damage from implant processes), more evenly distribute dopants in various regions of the substrate, and/or activate various regions of the substrate. The preferential melting processes will allow more uniform distribution of the dopants in the melted region, due to the increased diffusion rate and solubility of the dopant atoms in the molten region of the substrate. The creation of a melted region thus allows: 1) the dopant atoms to redistribute more uniformly, 2) defects created in prior processing steps to be removed, and 3) regions that have hyper-abrupt dopant concentrations to be formed.
    Type: Application
    Filed: August 12, 2010
    Publication date: December 23, 2010
    Inventors: Paul Carey, Aaron Muir Hunter, Dean Jennings, Abhilash J. Mayur, Stephen Moffatt, William Schaffer, Timothy N. Thomas, Mark Yam
  • Publication number: 20100297856
    Abstract: The present invention generally describes apparatuses and methods used to perform an annealing process on desired regions of a substrate. In one embodiment, pulses of electromagnetic energy are delivered to a substrate using a flash lamp or laser apparatus. The pulses may be from about 1 nsec to about 10 msec long, and each pulse has less energy than that required to melt the substrate material. The interval between pulses is generally long enough to allow the energy imparted by each pulse to dissipate completely. Thus, each pulse completes a micro-anneal cycle. The pulses may be delivered to the entire substrate at once, or to portions of the substrate at a time. Further embodiments provide an apparatus for powering a radiation assembly, and apparatuses for detecting the effect of pulses on a substrate.
    Type: Application
    Filed: August 9, 2010
    Publication date: November 25, 2010
    Inventors: Stephen Moffatt, Joseph M. Ranish
  • Publication number: 20100267173
    Abstract: Embodiments of the present invention pertain to substrate processing equipment and methods incorporating light sources which provide independent control of light pulse duration, shape and repetition rate. Embodiments further provide rapid increases and decreases in intensity of illumination.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: Applied Materials, Inc.
    Inventor: Stephen Moffatt
  • Publication number: 20100267174
    Abstract: Embodiments of the present invention pertain to substrate processing equipment and methods incorporating light emitting diodes (LEDs) for thermally processing substrates. Such light sources offer a variety of advantages including higher efficiency and more rapid response times. Pulse widths are selectable down to under a millisecond but can be for long pulses up to and exceeding a second. LEDs are preferable to tungsten-halogen lamps even in circumstances that allow longer processing times, since LEDs produce light with greater than 50% efficiency and tungsten-halogen lamps operate with less than 5% efficiency.
    Type: Application
    Filed: April 15, 2010
    Publication date: October 21, 2010
    Applicant: Applied Materials, Inc.
    Inventor: Stephen Moffatt
  • Publication number: 20100258431
    Abstract: A method and apparatus for manufacturing magnetic storage media is provided. A structural substrate is coated with a magnetically susceptible material, and a patterned resist layer is formed over the magnetically susceptible material. Atom groups are directed toward the substrate, penetrating the resist and implanting into the magnetically susceptible layer. Thick portions of the resist prevent implantation in some areas to form a pattern of magnetic properties on the substrate. Energy and composition of the atom groups, thickness and hardness of the resist, and lattice energy of the magnetically susceptible material may all be adjusted to yield desired fragmentation and implantation of the atom groups, including in some embodiments mere impact on the surface without implanting. A protective layer and a lubricating layer are formed over the patterned magnetically susceptible layer.
    Type: Application
    Filed: April 8, 2010
    Publication date: October 14, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Stephen Moffatt, Majeed A. Foad
  • Publication number: 20100258758
    Abstract: A method and apparatus for manufacturing magnetic storage media is provided. A structural substrate is coated with a magnetically active material, and a magnetic pattern is formed in the magnetically active material by treating portions of the material with energy from a laser, e-beam, or focused ion beam. The beam may be divided into a packet of beamlets by passing the beam through a divider, which may be a diffraction grating for laser energy, a thin film single crystal for electrons, or a perforated plate for ions, or the beam may be generated by an array of emitters. The beamlets are then focused to a desired dimension and distribution by optics or electric fields. The resulting beam packet may be shaped further by passing through an aperture of any desired shape. The resulting beam may be applied sequentially to exposure zones to treat an entire substrate or plurality of substrates.
    Type: Application
    Filed: April 13, 2010
    Publication date: October 14, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Majeed A. Foad, Stephen Moffatt
  • Patent number: 7800081
    Abstract: The present invention generally describes apparatuses and methods used to perform an annealing process on desired regions of a substrate. In one embodiment, pulses of electromagnetic energy are delivered to a substrate using a flash lamp or laser apparatus. The pulses may be from about 1 nsec to about 10 msec long, and each pulse has less energy than that required to melt the substrate material. The interval between pulses is generally long enough to allow the energy imparted by each pulse to dissipate completely. Thus, each pulse completes a micro-anneal cycle. The pulses may be delivered to the entire substrate at once, or to portions of the substrate at a time. Further embodiments provide an apparatus for powering a radiation assembly, and apparatuses for detecting the effect of pulses on a substrate.
    Type: Grant
    Filed: July 16, 2008
    Date of Patent: September 21, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Stephen Moffatt, Joseph M. Ranish
  • Patent number: 7795816
    Abstract: A laser beam is modulated at a very high frequency to produce uniform radiant flux densities on substrate surface processing regions during thermal processing. Beam modulation is achieved by passing the laser beam through a plasma which causes phase randomization within the laser beam. This method may be used for any application where intense, uniform illumination is desired, such as pulsed laser annealing, ablating, and wafer stepper illuminating.
    Type: Grant
    Filed: October 8, 2007
    Date of Patent: September 14, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Dean Jennings, Bruce E. Adams, Timothy N. Thomas, Stephen Moffatt
  • Publication number: 20100221583
    Abstract: Methods and apparatus for forming substrates having magnetically patterned surfaces is provided. A magnetic layer comprising one or more materials having magnetic properties is formed on a substrate. The magnetic layer is subjected to a patterning process in which selected portions of the surface of the magnetic layer are altered such that the altered portions have different magnetic properties from the non-altered portions without changing the topography of the substrate. A protective layer and a lubricant layer are deposited over the patterned magnetic layer. The patterning is accomplished through a number of processes that expose substrates to energy of varying forms. Apparatus and methods disclosed herein enable processing of two major surfaces of a substrate simultaneously, or sequentially by flipping. In some embodiments, magnetic properties of the substrate surface may be uniformly altered by plasma exposure and then selectively restored by exposure to patterned energy.
    Type: Application
    Filed: February 11, 2010
    Publication date: September 2, 2010
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Majeed A. Foad, Jacob Newman, Jose Antonio Marin, Daniel Hoffman, Stephen Moffatt, Steven Verhaverbeke
  • Patent number: 7745309
    Abstract: Methods for promoting interface bonding energy utilized in SOI technology are provided. In one embodiment, the method for promoting interface bonding energy includes providing a first substrate and a second substrate, wherein the first substrate has a silicon oxide layer formed thereon and a cleavage plane defined therein, performing a dry cleaning process on a surface of the silicon oxide layer and a surface of the second substrate, and bonding the cleaned silicon oxide surface of the first substrate to the cleaned surface of the second substrate.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: June 29, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Randhir P S Thakur, Stephen Moffatt, Per-Ove Hansson, Steve Ghanayem
  • Publication number: 20100111511
    Abstract: Embodiments of the invention generally contemplate an apparatus and method for monitoring and controlling the temperature of a substrate during processing. One embodiment of the apparatus and method takes advantage of an infrared camera to obtain the temperature profile of multiple regions or the entire surface of the substrate and a system controller to calculate and coordinate in real time an optimized strategy for reducing any possible temperature non-uniformity found on the substrate during processing.
    Type: Application
    Filed: October 31, 2008
    Publication date: May 6, 2010
    Inventors: Nir Merry, Stephen Moffatt, Kailash Patalay, David Keith Carlson
  • Publication number: 20100065547
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Publication number: 20100068898
    Abstract: A method and apparatus are provided for treating a substrate. The substrate is positioned on a support in a thermal treatment chamber. Electromagnetic radiation is directed toward the substrate to anneal a portion of the substrate. Other electromagnetic radiation is directed toward the substrate to preheat a portion of the substrate. The preheating reduces thermal stresses at the boundary between the preheat region and the anneal region. Any number of anneal and preheat regions are contemplated, with varying shapes and temperature profiles, as needed for specific embodiments. Any convenient source of electromagnetic radiation may be used, such as lasers, heat lamps, white light lamps, or flash lamps.
    Type: Application
    Filed: September 17, 2008
    Publication date: March 18, 2010
    Inventors: STEPHEN MOFFATT, Abhilash J. Mayur, Sundar Ramamurthy, Joseph Ranish, Aaron Hunter
  • Publication number: 20090275215
    Abstract: The present invention generally relates to a thermal processing apparatus and method that permits a user to index one or more preselected light sources capable of emitting one or more wavelengths to a collimator. Multiple light sources may permit a single apparatus to have the capability of emitting multiple, preselected wavelengths. The multiple light sources permit the user to utilize multiple wavelengths simultaneously to approximate “white light”. One or more of a frequency, intensity, and time of exposure may be selected for the wavelength to be emitted. Thus, the capabilities of the apparatus and method are flexible to meet the needs of the user.
    Type: Application
    Filed: June 19, 2008
    Publication date: November 5, 2009
    Inventor: STEPHEN MOFFATT