Patents by Inventor Stephen Quake

Stephen Quake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6964736
    Abstract: The invention relates to a microfabricated device and methods of using the device for analyzing and sorting polynucleotide molecules by size.
    Type: Grant
    Filed: December 13, 2001
    Date of Patent: November 15, 2005
    Assignee: California Institute of Technology
    Inventors: Stephen Quake, Wayne D. Volkmuth
  • Publication number: 20050229839
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Application
    Filed: May 23, 2005
    Publication date: October 20, 2005
    Applicants: California Institute of Technology, The Regents of the University of California
    Inventors: Stephen Quake, Carl Hansen, James Berger
  • Publication number: 20050226742
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: May 13, 2005
    Publication date: October 13, 2005
    Applicant: California Institute of Technology
    Inventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake
  • Publication number: 20050221373
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certaom devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Application
    Filed: May 19, 2005
    Publication date: October 6, 2005
    Applicant: California Institute of Technology
    Inventors: Markus Enzelberger, Carl Hansen, Jian Liu, Stephen Quake, Chiem Ma
  • Publication number: 20050205005
    Abstract: The use of microfluidic structures enables high throughput screening of protein crystallization. In one embodiment, an integrated combinatoric mixing chip allows for precise metering of reagents to rapidly create a large number of potential crystallization conditions, with possible crystal formations observed on chip. In an alternative embodiment, the microfluidic structures may be utilized to explore phase space conditions of a particular protein crystallizing agent combination, thereby identifying promising conditions and allowing for subsequent focused attempts to obtain crystal growth.
    Type: Application
    Filed: December 6, 2004
    Publication date: September 22, 2005
    Applicant: California Institute of Technology
    Inventors: Carl Hansen, Morten Sommer, Stephen Quake
  • Publication number: 20050196785
    Abstract: This invention relates to an array, including a universal micro-array, for the analysis of nucleic acids, such as DNA. The devices and methods of the invention can be used for identifying gene expression patterns in any organism. More specifically, all possible oligonucleotides (n-mers) necessary for the identification of gene expression patterns are synthesized. According to the invention, n is large enough to give the specificity to uniquely identify the expression pattern of each gene in an organism of interest, and is small enough that the method and device can be easily and efficiently practiced and made. The invention provides a method of analyzing molecules, such as polynucleotides (e.g., DNA), by measuring the signal of an optically-detectable (e.g., fluorescent, ultraviolet, radioactive or color change) reporter associated with the molecules. In a polynucleotide analysis device according to the invention, levels of gene expression are correlated to a signal from an optically-detectable (e.g.
    Type: Application
    Filed: January 5, 2005
    Publication date: September 8, 2005
    Applicant: California Institute of Technology
    Inventors: Stephen Quake, Robert Van Dam
  • Publication number: 20050178317
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Application
    Filed: April 12, 2005
    Publication date: August 18, 2005
    Inventors: Stephen Quake, Carl Hansen, James Berger
  • Publication number: 20050170367
    Abstract: The invention provides methods for sequencing a nucleic acid, and particularly methods for synthesizing fluorescently labeled nucleoside triphosphates and related analogs for sequencing nucleic acids.
    Type: Application
    Filed: June 10, 2004
    Publication date: August 4, 2005
    Inventors: Stephen Quake, Philip Buzby
  • Publication number: 20050166980
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: February 10, 2005
    Publication date: August 4, 2005
    Applicant: California Institute of Technology
    Inventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake, Markus Enzelberger, Mark Adams, Carl Hansen
  • Publication number: 20050168828
    Abstract: A microscopic lens, of size approximately 1 micron is used for its optical characteristics.
    Type: Application
    Filed: March 30, 2005
    Publication date: August 4, 2005
    Applicant: California Institute of Technology
    Inventors: Stephen Quake, James Brody
  • Publication number: 20050164376
    Abstract: A chemostat that includes a growth chamber having a plurality of compartments, where each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber, and an output port to remove fluids from the growth chamber. Also, a method of preventing biofilm formation in a growth chamber of a chemostat. The method may include the steps of adding a lysis agent to a isolated portion of the growth chamber, and reuniting the isolated portion with the rest of the growth chamber.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 28, 2005
    Applicant: California Institute of Technology
    Inventors: Frederick Balagadde, Carl Hansen, Emil Kartalov, Stephen Quake
  • Publication number: 20050147992
    Abstract: Methods for high speed, high throughput analysis of polynucleotide sequences, and apparatuses with which to carry out the methods are provided in the invention.
    Type: Application
    Filed: October 18, 2004
    Publication date: July 7, 2005
    Applicant: California Institute of technology
    Inventors: Stephen Quake, Wayne Volkmuth, Marc Unger
  • Patent number: 6911345
    Abstract: The present invention provides an apparatus for analyzing the sequences of polynucleotides. The apparatus comprises (a) flow cell which has at least one microfabricated multilayer elastomeric synthesis channel; and (b) an inlet port and an outlet port. The inlet port and outlet ports are in fluid communication with the flow cell for flowing fluids into and through the flow cell.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: June 28, 2005
    Assignee: California Institute of Technology
    Inventors: Stephen Quake, Wayne Volkmuth, Marc Unger
  • Publication number: 20050123947
    Abstract: This invention relates in general to a method for molecular fingerprinting. The method can be used for forensic identification (e.g. DNA fingerprinting, especially by VNTR), bacterial typing, and human/animal pathogen diagnosis. More particularly, molecules such as polynucleotides (e.g. DNA) can be assessed or sorted by size in a microfabricated device that analyzes the polynucleotides according to restriction fragment length polymorphism. In a microfabricated device according to the invention, DNA fragments or other molecules can be rapidly and accurately typed using relatively small samples, by measuring for example the signal of an optically-detectable (e.g., fluorescent) reporter associated with the polynucleotide fragments.
    Type: Application
    Filed: August 13, 2004
    Publication date: June 9, 2005
    Inventors: Stephen Quake, Hou-Pu Chou
  • Publication number: 20050112882
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: September 20, 2004
    Publication date: May 26, 2005
    Applicant: California Institute of Technology
    Inventors: Marc Unger, Hou-Pu Chou, Todd Thorsen, Axel Scherer, Stephen Quake
  • Publication number: 20050072946
    Abstract: Using basic physical arguments, a design and method for the fabrication of microfluidic valves using multilayer soft lithography is presented. Embodiments of valves in accordance with the present invention feature elastomer membrane portions of substantially constant thickness, allowing the membranes to experience similar resistance to an applied pressure across their entire width. Such on-off valves fabricated with upwardly- or downwardly-deflectable membranes can have extremely low actuation pressures, and can be used to implement active functions such as pumps and mixers in integrated microfluidic chips. Valve performance was characterized by measuring both the actuation pressure and flow resistance over a wide range of design parameters, and comparing them to both finite element simulations and alternative valve geometries.
    Type: Application
    Filed: August 10, 2004
    Publication date: April 7, 2005
    Applicant: California Institute of Technology
    Inventors: Vincent Studer, Stephen Quake, W. Anderson, Sebastian Maerkl
  • Publication number: 20050062196
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Application
    Filed: March 26, 2004
    Publication date: March 24, 2005
    Applicants: California Institute of Technology, The Regents of the University of California
    Inventors: Carl Hansen, Stephen Quake, James Berger
  • Publication number: 20050052754
    Abstract: Soft lithography with surface tension control is used to microfabricate extremely efficient solid immersion lenses (SILs) out of rubber elastomeric material for use in microscope type applications. In order to counteract the surface tension of the mold material in a negative mold that causes creep on a positive mold, material such as RTV is partially cured before use in order to allow the reticulation of polymer chains to change the viscosity of the uncured material in a controllable manner. In a specific embodiment, the techniques of soft lithography with surface tension control are used to make molded SILs out of the elastomer polydimethylsiloxane. The lenses achieve an NA in the range of 1.25. The principle of compound lens design is used to make the first compound solid immersion lens, which is corrected for higher light gathering ability and has a calculated NA=1.32.
    Type: Application
    Filed: August 10, 2004
    Publication date: March 10, 2005
    Applicant: California Institute of Technology
    Inventors: Stephen Quake, Yann Gambin, Olivier Legrand
  • Publication number: 20050053952
    Abstract: Nucleic acid from cells and viruses sampled from a variety of environments may purified and expressed utilizing microfluidic techniques. In accordance with one embodiment of the present invention, individual or small groups of cells or viruses may be isolated in microfluidic chambers by dilution, sorting, and/or segmentation. The isolated cells or viruses may be lysed directly in the microfluidic chamber, and the resulting nucleic acid purified by exposure to affinity beads. Subsequent elution of the purified nucleic acid may be followed by ligation and cell transformation, all within the same microfluidic chip. In one specific application, cell isolation, lysis, and nucleic acid purification may be performed utilizing a highly parallelized microfluidic architecture to construct gDNA and cDNA libraries.
    Type: Application
    Filed: October 2, 2003
    Publication date: March 10, 2005
    Applicant: California Institute of Technology
    Inventors: Jong Hong, Vincent Studer, W. Anderson, Stephen Quake, Jared Leadbetter
  • Publication number: 20050036222
    Abstract: A microlens structure such as a solid immersion lens structure is a radiation transmissive pliant elastomer cast to a desired shape and smoothness. A method for construction of a solid immersion lens structure includes providing a mold defining a lens shaped cavity in which a solid immersion lens is cast, casting a translucent liquid elastomeric material into the lens cavity, permitting the elastomeric material to set to form the solid immersion lens portion and removing the solid immersion lens portion from the mold. A specific material for use as the solid immersion lens is a translucent silicone elastomer of a refractive index greater than n=1.4, such as General Electric RTV 615.
    Type: Application
    Filed: September 1, 2004
    Publication date: February 17, 2005
    Applicant: California Institute of Technology
    Inventors: Olivier Legrand, Stephen Quake