Patents by Inventor Stephen R. Forrest

Stephen R. Forrest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8592680
    Abstract: The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: November 26, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Barry P. Rand, Stephen R. Forrest
  • Publication number: 20130293082
    Abstract: An electrically powered light source can be constructed with an electroluminescent element operating essentially at room temperature while providing a useful amount of light. A thermal junction located between an OLED and a cover layer of an OLED device is configured to advantageously manage the steady-state temperature of the OLED. The thermal junction may be formed with a thermal resistance of 0.2 m2·K/W or less. A distance across the junction may be 2 mm or less, and/or the junction may include a layer of material having a thermal conductivity of 0.1 W/m·K or greater.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Stephen R. Forrest, Kevin Bergemann
  • Patent number: 8574726
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: November 5, 2013
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 8557402
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: October 15, 2013
    Assignees: The Trustees of Princeton University, The Universtiy of Southern California
    Inventors: Mark E. Thompson, Peter Djurovich, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Publication number: 20130255758
    Abstract: An organic photovoltaic cell includes an anode and a cathode, and a plurality of organic semiconductor layers between the anode and the cathode. At least one of the anode and the cathode is transparent. Each two adjacent layers of the plurality of organic semiconductor layers are in direct contact. The plurality of organic semiconductor layers includes an intermediate layer consisting essentially of a photoconductive material, and two sets of at least three layers. A first set of at least three layers is between the intermediate layer and the anode. Each layer of the first set consists essentially of a different organic semiconductor material having a higher LUMO and a higher HOMO, relative to the material of an adjacent layer of the plurality of organic semiconductor layers closer to the cathode. A second set of at least three layers is between the intermediate layer and the cathode.
    Type: Application
    Filed: July 14, 2006
    Publication date: October 3, 2013
    Inventors: Barry Rand, Stephen R. Forrest, Diana Pendergrast Burk
  • Publication number: 20130240840
    Abstract: Doping metal oxide charge transport material with an organic molecule lowers electrical resistance while maintaining transparency and thus is optimal for use as charge transport materials in various organic optoelectronic devices such as organic photovoltaic devices and organic light emitting devices.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 19, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Brian E. Lassiter
  • Publication number: 20130240850
    Abstract: An organic light emitting device (OLED) is provided. The OLED includes, an anode; a cathode; and an emissive layer disposed between the anode and the cathode. The emissive layer includes a singlet fission sensitizer and a triplet emitter. The singlet energy of the singlet fission sensitizer is equal to or greater than twice the triplet energy of the singlet fission sensitizer. The triplet energy of the triplet emitter is less than the triplet energy of the singlet fission sensitizer.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 19, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Yifan Zhang, Kevin Bergemann
  • Patent number: 8535759
    Abstract: A method of depositing organic material is provided. A carrier gas carrying organic material is ejected from a nozzle at a flow velocity that is at least 10% of the thermal velocity of the carrier gas, such that the organic material is deposited onto a substrate. In some embodiments, the dynamic pressure in a region between the nozzle and the substrate surrounding the carrier gas is at least 1 Torr, and more preferably 10 Torr, during the ejection. In some embodiments, a guard flow is provided around the carrier gas.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: September 17, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Max Shtein
  • Patent number: 8519258
    Abstract: A system comprising a plurality of organic photovoltaic cells arranged in a stack disposed between a first electrode and a second electrode, and a resistive load electrically connected across the first electrode and the second electrode. Each cell comprises a rectifying junction at an interface of organic semiconductor materials. There is metal or metal substitute disposed in the stack between each of the cells. At least a first cell and a second cell of the plurality of organic photovoltaic cells have different absorption characteristics. Photocurrent from the plurality of organic photovoltaic cells energizes the resistive load.
    Type: Grant
    Filed: October 6, 2006
    Date of Patent: August 27, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Vladimir Bulovic
  • Publication number: 20130210189
    Abstract: A method of preparing a bulk heterojunction organic photovoltaic cell through combinations of thermal and solvent vapor annealing are described. Bulk heterojunction films may prepared by known methods such as spin coating, and then exposed to one or more vaporized solvents and thermally annealed in an effort to enhance the crystalline nature of the photoactive materials.
    Type: Application
    Filed: April 6, 2011
    Publication date: August 15, 2013
    Inventors: Stephen R. Forrest, Mark E. Thompson, Guodan Wei, Siyi Wang
  • Publication number: 20130208036
    Abstract: An OVJP apparatus and method for applying organic vapor or other flowable material to a substrate using a printing head mechanism in which the print head spacing from the substrate is controllable using a cushion of air or other gas applied between the print head and substrate. The print head is mounted for translational movement towards and away from the substrate and is biased toward the substrate by springs or other means. A gas cushion feed assembly supplies a gas under pressure between the print head and substrate which opposes the biasing of the print head toward the substrate so as to form a space between the print head and substrate. By controlling the pressure of gas supplied, the print head separation from the substrate can be precisely controlled.
    Type: Application
    Filed: July 1, 2011
    Publication date: August 15, 2013
    Inventor: Stephen R. Forrest
  • Publication number: 20130153032
    Abstract: A photovoltaic device includes a photoactive region disposed between and electrically connected to two electrodes where the photoactive region includes photoactive polymer-wrapped carbon nanotubes that create excitons upon absorption of light in the range of about 400 nm to 1400 nm.
    Type: Application
    Filed: May 20, 2011
    Publication date: June 20, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Michael S. Arnold, Jeramy D. Zimmerman
  • Patent number: 8466004
    Abstract: Organic photosensitive optoelectronic devices are disclosed. The devises are thin-film crystalline organic optoelectronic devices capable of generating a voltage when exposed to light, and prepared by a method including the steps of: depositing a first organic layer over a first electrode; depositing a second organic layer over the first organic layer; depositing a confining layer over the second organic layer to form a stack; annealing the stack; and finally depositing a second electrode over the second organic layer.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: June 18, 2013
    Assignee: The Trustees of Princeton University
    Inventors: Peter Peumans, Soichi Uchida, Stephen R. Forrest
  • Patent number: 8456081
    Abstract: A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer further comprises an organic host compound, an organic emitting compound capable of fluorescent emission at room temperature, and an organic dopant compound. The triplet energy of the dopant compound is lower than the triplet energy of the host compound. The dopant compound does not strongly absorb the fluorescent emission of the emitting compound.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: June 4, 2013
    Assignees: The University of Southern California, The Regents of the University of Michigan
    Inventors: Yifan Zhang, Stephen R. Forrest, Mark Thompson
  • Patent number: 8450730
    Abstract: Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.
    Type: Grant
    Filed: February 2, 2011
    Date of Patent: May 28, 2013
    Assignee: The Regents of the University of Michigan
    Inventor: Stephen R. Forrest
  • Patent number: 8440021
    Abstract: The invention provides apparatus and methods for organic continuum vapor deposition of organic materials on large area substrates.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: May 14, 2013
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Fan Yang, Richard Lunt
  • Publication number: 20130107902
    Abstract: A first device is provided. The device includes an organic semiconductor laser. The organic semiconductor laser further includes an optical cavity and an organic layer disposed within the optical cavity. The organic layer includes: an organic host compound; an organic emitting compound capable of fluorescent emission; and an organic dopant compound. The organic dopant compound may also be referred to herein as a “triplet manager.” The triplet energy of the organic dopant compound is lower than or equal to the triplet energy of the organic host compound. The triplet energy of the organic dopant compound is lower or equal to than the triplet energy of the organic emitting compound. The singlet energy of the organic emitting compound is lower than the singlet energy of the organic host compound.
    Type: Application
    Filed: October 27, 2011
    Publication date: May 2, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Yifan Zhang
  • Publication number: 20130107904
    Abstract: A first device is provided. The device includes an organic semiconductor laser. The organic semiconductor laser further includes an optical cavity and an organic layer disposed within the optical cavity. The organic layer includes: an organic host compound; an organic emitting compound capable of fluorescent emission; and an organic dopant compound. The organic dopant compound may also be referred to herein as a “triplet manager.” The triplet energy of the organic dopant compound is lower than or equal to the triplet energy of the organic host compound. The triplet energy of the organic dopant compound is lower than or equal to the triplet energy of the organic emitting compound. The singlet energy of the organic emitting compound is lower than or equal to the singlet energy of the organic host compound.
    Type: Application
    Filed: April 13, 2012
    Publication date: May 2, 2013
    Applicant: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Yifan Zhang
  • Publication number: 20130105779
    Abstract: There is disclosed a method for preparing the surface of a metal substrate. The present disclosure also relates to an organic photovoltaic device comprising a metal substrate made by such method. Also disclosed herein is an inverted photosensitive device comprising a reflective electrode comprising stainless steel foil, an organic donor-acceptor heterojunction over the reflective electrode, and a transparent electrode over the donor-acceptor heterojunction.
    Type: Application
    Filed: November 1, 2012
    Publication date: May 2, 2013
    Inventors: Stephen R. Forrest, Xiaoran Tong, Jun Yeob Lee, Yong Joo Cho
  • Patent number: 8415757
    Abstract: A photosensitive optoelectronic device having an improved hybrid planar bulk heterojunction includes a plurality of photoconductive materials disposed between the anode and the cathode. The photoconductive materials include a first continuous layer of donor material and a second continuous layer of acceptor material. A first network of donor material or materials extends from the first continuous layer toward the second continuous layer, providing continuous pathways for conduction of holes to the first continuous layer. A second network of acceptor material or materials extends from the second continuous layer toward the first continuous layer, providing continuous pathways for conduction of electrons to the second continuous layer. The first network and the second network are interlaced with each other. At least one other photoconductive material is interspersed between the interlaced networks.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: April 9, 2013
    Assignees: The Trustees of Princeton University, The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Fan Yang