Patents by Inventor Stephen R. Forrest

Stephen R. Forrest has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7078113
    Abstract: Light emitting devices having charge transporting layers comprising one or more metal complexes are provided. More particularly, devices include hole transporting layers comprising at least one metal complex are disclosed. The present devices can further comprise an electron blocking layer for improved efficiency.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: July 18, 2006
    Assignees: The University of Southern California, The Trustees of Princeton University
    Inventors: Mark E. Thompson, Xiaofan Ren, Peter Djurovich, Haiping Hong, Stephen R. Forrest, Chihaya Adachi
  • Patent number: 7061011
    Abstract: An organic device is provided, having a first electrode and a second electrode. A first organic layer is disposed between the first electrode and the second electrode. The first organic layer includes a first organic material, with a concentration of at least 50% molar, and a second organic material, with a concentration less than 50% molar. A second organic layer is also disposed between the first electrode and the second electrode. The second organic layer includes the second organic material, with a concentration of at least 50% molar, and the first organic material, with a concentration less than 50% molar. The first organic material may act as an n-dopant in the second organic layer, and the second organic material may act as a p-dopant in the first organic layer. Alternately, the first organic material may act as a p-dopant in the second organic layer, and the second organic material may act as an n-dopant in the first organic layer.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: June 13, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Jiangeng Xue
  • Patent number: 7053412
    Abstract: A light emitting device capable of displaying grey scale is provided. The device has a pixel having a plurality of bistable subpixels. Each subpixel has an ON state and an OFF state. A different power line is coupled to each bistable subpixel. Circuitry that can individually modulate the pulse width of a power signal transmitted through each power line is connected to the power lines. Each subpixel includes a first light emitting device the emits light when the subpixel is in the ON state. Each subpixel has substantially the same size and emits substantially the same spectrum of light in the ON state.
    Type: Grant
    Filed: June 27, 2003
    Date of Patent: May 30, 2006
    Assignee: The Trustees of Princeton University and Universal Display Corporation
    Inventors: Michael Hack, Stephen R. Forrest, Jiangeng Xue
  • Patent number: 7026187
    Abstract: A method of employing organic vapor phase deposition to fabricate a polycrystalline organic thin film is described. By employing organic vapor phase deposition at moderate deposition chamber pressures and substrate temperatures, a polycrystalline organic thin film results having significantly larger purity and grain size than what is achievable by vacuum thermal evaporation. These polycrystalline organic thin films may be employed in a variety of applications, including, for example, organic light emitting devices, photovoltaic cells, photodetectors, lasers, and thin film transistors.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: April 11, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Max Shtein, Stephen R. Forrest
  • Patent number: 7025277
    Abstract: A smart card may include integrated circuitry and I/O components composed of organic materials. Organic materials are advantageous because they remain intact under instances of physical stress. They permit the smart card to undergo flexion from time to time without damaging the processing components thereon. Further, use of organic materials leads to reduced costs during manufacture. For example, the organic materials may be provided directly upon substrates composed of ordinary plastic materials thereby reducing the costs of manufacture of these smart cards when compared with smart cards that are made of traditional silicon-based integrated circuits.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: April 11, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Peter Peumans
  • Patent number: 7026041
    Abstract: Organic photosensitive optoelectronic devices (“OPODs”) are disclosed which include an exciton blocking layer to enhance device efficiency. Single heterostructure, stacked and wave-guide type embodiments are disclosed. Photodetector OPODs having multilayer structures and an exciton blocking layer are also disclosed. Guidelines for selection of exciton blocking layers are provided.
    Type: Grant
    Filed: January 14, 2005
    Date of Patent: April 11, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Vladimir Bulovic, Peter Peumans
  • Patent number: 7022421
    Abstract: Light emitting devices having blocking layers comprising one or more metal complexes are provided. The blocking layers may serve to block electrons, holes, and/or excitons. Preferably, the devices further comprise a separate emissive layer in which charge and/or excitons are confined. Metal complexes suitable for blocking layers can be selected by comparison of HOMO and LUMO energy levels of materials comprising adjacent layers in devices of the present invention.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: April 4, 2006
    Assignees: The University of Southern California, The Trustees of Princeton University
    Inventors: Mark E. Thompson, Xiaofan Ren, Vadim Adamovich, Steven Cordero, Brian Wendell D'Andrade, Bert Alleyne, Stephen R. Forrest
  • Patent number: 7009338
    Abstract: The present invention relates to efficient organic light emitting devices (OLEDs) doped with multiple light-emitting dopants, at least one dopant comprising a phosphorescent emitter, in a thin film emissive layer or layers. The present invention is directed to an efficient phosphorescent organic light emitting device utilizing a plurality of emissive dopants in an emissive region, wherein at least one of the dopants is a phosphorescent material. Thus, the present invention provides an organic light emitting device comprising an emissive region, wherein the emissive region comprises a host material, and a plurality of emissive dopants, wherein the emissive region is comprised of a plurality of bands and each emissive dopant is doped into a separate band within the emissive region, and wherein at least one of the emissive dopants emits light by phosphorescence.
    Type: Grant
    Filed: May 13, 2002
    Date of Patent: March 7, 2006
    Assignees: The University of Southern California, The Trustees of Princeton University
    Inventors: Brian D'Andrade, Mark E. Thompson, Stephen R. Forrest
  • Patent number: 7001536
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: February 21, 2006
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Peter Djurovic, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 6995445
    Abstract: The present invention is directed to organic photosensitive optoelectronic devices and methods of use for determining the position of a light source. Provided is an organic position sensitive detector (OPSD) comprising: a first electrode, which is resistive and may be either an anode or a cathode; a first contact in electrical contact with the first electrode; a second contact in electrical contact with the first electrode; a second electrode disposed near the first electrode; a donor semiconductive organic layer disposed between the first electrode and the second electrode; and an acceptor semiconductive organic layer disposed between the first electrode and the second electrode and adjacent to the donor semiconductive organic layer. A hetero-junction is located between the donor layer and the acceptor layer, and at least one of the donor layer and the acceptor layer is light absorbing.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: February 7, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Barry P. Rand, Michael J. Lange
  • Patent number: 6984934
    Abstract: A microlens array for a light emitting device is disclosed. The light emitting device includes a plurality of OLEDs, each OLED having a minimum planar dimension. The array includes a plurality of microlenses, each of which has a minimum planar dimension and a maximum planar dimension. The minimum planar dimensions of the microlenses are larger than the maximum wavelength of visible light emitted from the OLEDs. The maximum planar dimensions of the microlenses are smaller than the smallest minimum planar dimension of any of the OLEDs.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: January 10, 2006
    Assignee: The Trustees of Princeton University
    Inventors: Sven Möller, Stephen R. Forrest
  • Patent number: 6972431
    Abstract: The present invention generally relates to organic photodetectors. Further, it is directed to an optimized organic photodetector having reduced dark current and high efficiency and response time.
    Type: Grant
    Filed: November 26, 2003
    Date of Patent: December 6, 2005
    Assignee: Trustees of Princeton University
    Inventors: Stephen R. Forrest, Jiangeng Xue
  • Patent number: 6970490
    Abstract: When the density of excitons in an organic single crystal (including the linear acenes, polyacenes, and thiophenes) approaches the density of molecular sites, an electron-hole plasma may form in the material altering the overall excitonic character of the system. The formation of the electron-hole plasma arises as a result of the screening of Coulomb interactions within individual excitons by injected free carriers. The large exciton densities required to accomplish this screening process can only be realized when excitons collect near dislocations, defects, traps, or are confined in heterostructures. Such confinement and subsequently large exciton densities allows for the observation of physical phenomena not generally accessible in an organic material. Specifically, the formation of an electron-hole plasma in an organic single crystal can allow for the observation of field-effect transistor action and electrically-pumped lasing.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: November 29, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Russell James Delmar Holmes, Marc A. Baldo, Stephen R. Forrest
  • Patent number: 6939624
    Abstract: Emissive phosphorescent organometallic compounds are described that produce improved electroluminescence, particularly in the blue region of the visible spectrum. Organic light emitting devices employing such emissive phosphorescent organometallic compounds are also described. Also described is an organic light emitting layer including a host material having a lowest triplet excited state having a decay rate of less than about 1 per second; a guest material dispersed in the host material, the guest material having a lowest triplet excited state having a radiative decay rate of greater than about 1×105 or about 1×106 per second and wherein the energy level of the lowest triplet excited state of the host material is lower than the energy level of the lowest triplet excited state of the guest material.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: September 6, 2005
    Assignees: Universal Display Corporation, The University of Southern California, The Trustees of Princeton University
    Inventors: Sergey Lamansky, Mark E. Thompson, Vadim Adamovich, Peter I. Djurovich, Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, Raymond Kwong
  • Patent number: 6902830
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing an emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, and the emissive molecule is selected from the group of phosphorescent organometallic complexes, including cyclometallated platinum, iridium and osmium complexes. The organic light emitting devices optionally contain an exciton blocking layer. Furthermore, improved electroluminescent efficiency in organic light emitting devices is obtained with an emitter layer comprising organometallic complexes of transition metals of formula L2MX, wherein L and X are distinct bidentate ligands. Compounds of this formula can be synthesized more facilely than in previous approaches and synthetic options allow insertion of fluorescent molecules into a phosphorescent complex, ligands to fine tune the color of emission, and ligands to trap carriers.
    Type: Grant
    Filed: June 13, 2002
    Date of Patent: June 7, 2005
    Assignees: The Trustees of Princeton University, The University of Southern California
    Inventors: Mark E. Thompson, Peter Djurovic, Sergey Lamansky, Drew Murphy, Raymond Kwong, Feras Abdel-Razzaq, Stephen R. Forrest, Marc A. Baldo, Paul E. Burrows
  • Patent number: 6900588
    Abstract: The present invention is directed to simplified OLED structures comprising an anode layer, a hole injecting layer (HIL) in direct contact with the anode layer, an emissive organic electron transporting layer (ETL) in direct contact with the hole injecting layer, and a cathode layer in direct contact with the emissive organic electron transporting layer. The hole injecting material used in the hole injecting layer is characterized, in particular, as being an organic material having an ionization potential that is not more than about 0.7 eV greater than the ionization potential of the material used for the anode layer. The emissive organic electron transporting layer comprises an organic electron transporting material and an organic hole-trapping emissive material, for example, an organic phosphorescent material that produces emission from a triplet excited state of an organic molecule.
    Type: Grant
    Filed: May 30, 2003
    Date of Patent: May 31, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest
  • Patent number: 6895667
    Abstract: Methods for patterning a metal over a substrate and devices formed using the methods are disclosed. A patterned die having at least one raised portion and having a metal layer over the die is pressed onto a thin metal film over a substrate, such that the metal layer over the raised portion of the patterned die contacts portions of the thin metal film. Pressure is then applied such that the metal layer and the thin metal film cold-weld to one another. The patterned die is removed, such that the portions of the metal layer cold-welded to the thin metal film break away from the die and remain cold-welded to the thin metal film over the substrate, in substantially the same pattern as the patterned die.
    Type: Grant
    Filed: April 13, 2001
    Date of Patent: May 24, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Changsoon Kim
  • Patent number: 6894307
    Abstract: Organic light emitting devices are described wherein the emissive layer comprises a host material containing a fluorescent or phosphorescent emissive molecule, which molecule is adapted to luminesce when a voltage is applied across the heterostructure, wherein an intersystem crossing molecule of optical absorption spectrum matched to the emission spectrum of the emissive molecule enhances emission efficiency.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: May 17, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Stephen R. Forrest, Mark E. Thompson, Marc A. Baldo
  • Patent number: 6888306
    Abstract: An organic light emitting device (OLED) is disclosed for which the hole transporting layer, the electron transporting layer and/or the emissive layer, if separately present, is comprised of a non-polymeric material. A method for preparing such OLED's using vacuum deposition techniques is further disclosed.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: May 3, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Gong Gu, Paul Burrows, Stephen R. Forrest
  • Patent number: 6885149
    Abstract: A highly transparent non-metallic cathode is disclosed that comprises a metal-doped organic electron injection layer that is in direct contact with a transparent non-metallic electron injecting cathode layer, such as indium tin oxide (ITO), wherein the metal-doped organic electron injection layer also functions as an exciton blocking or hole blocking layer. The metal-doped organic electron injection layer is created by diffusing an ultra-thin layer of about 5-10 ? of a highly electropositive metal such as Li throughout the layer. A representative embodiment of the highly transparent non-metallic cathode comprises a layer of ITO, a layer of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), which acts as an electron injection, exciton blocking, and hole blocking layer, and an ultra-thin layer of lithium, which degenerately dopes the layer of BCP, improving the electron injecting properties of the BCP layer.
    Type: Grant
    Filed: October 28, 2003
    Date of Patent: April 26, 2005
    Assignee: The Trustees of Princeton University
    Inventors: Gautam Parthasarathy, Chihaya Adachi, Paul E. Burrows, Stephen R. Forrest