Patents by Inventor Stephen R. Hooper

Stephen R. Hooper has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8890308
    Abstract: An integrated circuit package includes an electronic sensor protected by a lid structure. The electronic sensor includes a transducer placed on a backside surface of a lead frame assembly. The lid structure is placed over the transducer and is attached to the lead frame assembly on the backside surface. The lid can define an air cavity around the transducer, such that mold compound, gel, or other protective chemical material is not placed in contact with the transducer. The transducer is therefore protected without a chemical protectant, lowering the cost of the integrated circuit package and maintaining the sensitivity and performance of the transducer.
    Type: Grant
    Filed: April 6, 2012
    Date of Patent: November 18, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, William C. Stermer, Jr.
  • Patent number: 8884413
    Abstract: A leadframe (e.g., incorporated in a device package) includes a feature (e.g., a die pad or lead) with a vent hole formed between first and second opposed surfaces. The cross-sectional area of the vent hole varies substantially between the surfaces (e.g., the vent hole has a constricted portion). The vent hole may be formed from a first opening extending from the first surface toward the second surface to a first depth that is less than a thickness of the leadframe feature, and a second opening extending from the second surface toward the first surface to a second depth that is less than the thickness of the leadframe feature, but that is large enough for the second opening to intersect the first opening. Vertical central axes of the openings are horizontally offset from each other, and the constricted portion of the vent hole corresponds to the intersection of the openings.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: November 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Stephen R. Hooper
  • Patent number: 8841758
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: September 23, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Dwight L. Daniels, Stephen R. Hooper, Alan J. Magnus, Justin E. Poarch
  • Publication number: 20140146509
    Abstract: Embodiments include devices and methods of their manufacture. A device embodiment includes a package housing, at least one electronic circuit (e.g., a sensor circuit), a first material, and a second material. The package housing includes a cavity that is partially defined by a cavity bottom surface, and the cavity bottom surface includes a mounting area and a non-mounting area. The at least one electronic circuit is attached to the cavity bottom surface over the mounting area. The first material has a relatively high, first modulus of elasticity, and covers the non-mounting area. The second material has a relatively low, second modulus of elasticity, and is disposed over the first material within the cavity.
    Type: Application
    Filed: November 27, 2012
    Publication date: May 29, 2014
    Inventors: STEPHEN R. HOOPER, DARREL R. FREAR, WILLIAM C. STERMER, JR.
  • Publication number: 20140124958
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94) Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Application
    Filed: January 9, 2014
    Publication date: May 8, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Patent number: 8686550
    Abstract: A pressure sensor package is provided that reduces the occurrence of micro gaps between molding material and metal contacts that can store high-pressure air. The present invention provides this capability by reducing or eliminating interfaces between package molding material and metal contacts. In one embodiment, a control die is electrically coupled to a lead frame and then encapsulated in molding material, using a technique that forms a cavity over a portion of the control die. The cavity exposes contacts on the free surface of the control die that can be electrically coupled to a pressure sensor device using, for example, wire bonding techniques. In another embodiment, a region of a substrate can be encapsulated in molding material, using a technique that forms a cavity over a sub-portion of the substrate that includes contacts. A pressure sensor device can be electrically coupled to the exposed contacts.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: William G. McDonald, Alexander M. Arayata, Philip H. Bowles, Stephen R. Hooper
  • Publication number: 20140061883
    Abstract: A leadframe (e.g., incorporated in a device package) includes a feature (e.g., a die pad or lead) with a vent hole formed between first and second opposed surfaces. The cross-sectional area of the vent hole varies substantially between the surfaces (e.g., the vent hole has a constricted portion). The vent hole may be formed from a first opening extending from the first surface toward the second surface to a first depth that is less than a thickness of the leadframe feature, and a second opening extending from the second surface toward the first surface to a second depth that is less than the thickness of the leadframe feature, but that is large enough for the second opening to intersect the first opening. Vertical central axes of the openings are horizontally offset from each other, and the constricted portion of the vent hole corresponds to the intersection of the openings.
    Type: Application
    Filed: August 31, 2012
    Publication date: March 6, 2014
    Inventors: PHILIP H. BOWLES, Stephen R. Hooper
  • Publication number: 20140061948
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure (117). The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers (92, 94). One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers (92, 94, 102) to expose the bond pads (42), forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Patent number: 8659167
    Abstract: A method (80) entails providing (82) a structure (117), providing (100) a controller element (102, 24), and bonding (116) the controller element to an outer surface (52, 64) of the structure. The structure includes a sensor wafer (92) and a cap wafer (94). Inner surfaces (34, 36) of the wafers (92, 94) are coupled together, with sensors (30) interposed between the wafers. One wafer (94, 92) includes a substrate portion (40, 76) with bond pads (42) formed on its inner surface (34, 36). The other wafer (94, 92) conceals the substrate portion (40, 76). After bonding, methodology (80) entails forming (120) conductive elements (60) on the element (102, 24), removing (126) material sections (96, 98, 107) from the wafers to expose the bond pads, forming (130) electrical interconnects (56), applying (134) packaging material (64), and singulating (138) to produce sensor packages (20, 70).
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20140015123
    Abstract: A method (70) of forming sensor packages (20) entails providing a sensor wafer (74) having sensors (30) formed on a side (26) positioned within areas (34) delineated by bonding perimeters (36), and providing a controller wafer (82) having control circuitry (42) at one side (38) and bonding perimeters (46) on an opposing side (40). The bonding perimeters (46) of the controller wafer (82) are bonded to corresponding bonding perimeters (36) of the sensor wafer (74) to form a stacked wafer structure (48) in which the control circuitry (42) faces outwardly. The controller wafer (82) is sawn to reveal bond pads (32) on the sensor wafer (74) which are wire bonded to corresponding bond pads (44) formed on the same side (38) of the wafer (82) as the control circuitry (42). The structure (48) is encapsulated in packaging material (62) and is singulated to produce the sensor packages (20).
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Philip H. Bowles, Paige M. Holm, Stephen R. Hooper, Raymond M. Roop
  • Publication number: 20140001616
    Abstract: A structure and method to improve saw singulation quality and wettability of integrated circuit packages (140) assembled with lead frames (112) having half-etched recesses (134) in leads. A method of forming a semiconductor device package includes providing a lead frame strip (110) having a plurality of lead frames. Each of the lead frames includes a depression (130) that is at least partially filled with a material (400) prior to singulating the strip.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Dwight L. DANIELS, Stephen R. HOOPER, Alan J. MAGNUS, Justin E. POARCH
  • Publication number: 20130313700
    Abstract: A method (30) of forming a semiconductor package (20) entails applying (56) an adhesive (64) to a portion (66) of a bonding perimeter (50) of a base (22), with a section (68) of the perimeter (50) being without the adhesive (64). A lid (24) is placed on the base (22) so that a bonding perimeter (62) of the lid (24) abuts the bonding perimeter (50) of the base (22). The lid (24) includes a cavity (25) in which dies (38) mounted to the base (22) are located. A gap (70) is formed without the adhesive (64) at the section (68) between the base (22) and the lid (24). The structure vents from the gap (70) as air inside the cavity (25) expands during heat curing (72). Following heat curing (72), another adhesive (80) is dispensed in the section (68) to close the gap (70) and seal the cavity (25).
    Type: Application
    Filed: May 23, 2012
    Publication date: November 28, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Stephen R. Hooper, Philip H. Bowles
  • Publication number: 20130297248
    Abstract: A tester configured to test a strip of devices is provided. The tester may include a communications system, a plurality of communication lines, a plurality of multiplexors, each multiplexor having at least two outputs, wherein each multiplexor is configured to receive a signal generated by the communications system via one of the plurality of communication lines, and each multiplexor may be selectably coupled to at least two of the devices in the strip of devices. The tester may be configured to index the plurality of communication lines to a first subset of the devices, initiate at least one test, command the devices to generate data for each of the at least one tests, retrieve data from a first set of the devices, and retrieve data from a second set of the devices.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Chad S. Dawson, Stephen R. Hooper, Peter T. Jones, Mark E. Schlarmann
  • Publication number: 20130264692
    Abstract: An integrated circuit package includes an electronic sensor protected by a lid structure. The electronic sensor includes a transducer placed on a backside surface of a lead frame assembly. The lid structure is placed over the transducer and is attached to the lead frame assembly on the backside surface. The lid can define an air cavity around the transducer, such that mold compound, gel, or other protective chemical material is not placed in contact with the transducer. The transducer is therefore protected without a chemical protectant, lowering the cost of the integrated circuit package and maintaining the sensitivity and performance of the transducer.
    Type: Application
    Filed: April 6, 2012
    Publication date: October 10, 2013
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Stephen R. Hooper, William C. Stermer, JR.
  • Publication number: 20130207207
    Abstract: A pressure sensor package is provided that reduces the occurrence of micro gaps between molding material and metal contacts that can store high-pressure air. The present invention provides this capability by reducing or eliminating interfaces between package molding material and metal contacts. In one embodiment, a control die is electrically coupled to a lead frame and then encapsulated in molding material, using a technique that forms a cavity over a portion of the control die. The cavity exposes contacts on the free surface of the control die that can be electrically coupled to a pressure sensor device using, for example, wire bonding techniques. In another embodiment, a region of a substrate can be encapsulated in molding material, using a technique that forms a cavity over a sub-portion of the substrate that includes contacts. A pressure sensor device can be electrically coupled to the exposed contacts.
    Type: Application
    Filed: February 13, 2012
    Publication date: August 15, 2013
    Inventors: William G. McDonald, Alexander M. Arayata, Philip H. Bowles, Stephen R. Hooper
  • Patent number: 8476087
    Abstract: Fabrication methods are provided for a sensor device packages. An exemplary fabrication method involves bonding a sensor structure and another structure using a sealing structure. The sealing structure surrounds a diaphragm region of the sensor structure and provides an airtight seal between the sensor structure and the other structure to establish a fixed reference pressure on one side of the diaphragm region.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: July 2, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, Dwight L. Daniels, James D. MacDonald, William G. McDonald, Chunlin C. Xia
  • Patent number: 8384168
    Abstract: Apparatus and related fabrication methods are provided for a sensor device. The sensor device includes a sensor structure including a first portion having a sensing arrangement formed thereon and a second structure. A sealing structure is interposed between the sensor structure and the second structure, wherein the sealing structure surrounds the first portion of the sensor structure. The sealing structure establishes a fixed reference pressure on a first side of the first portion, and an opposing side of the first portion is exposed to an ambient pressure.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: February 26, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, Dwight L. Daniels, James D. MacDonald, William G. McDonald, Chunlin C. Xia
  • Patent number: 8359927
    Abstract: A method and apparatus are described for fabricating an exposed differential pressure sensor (30) which protects interior electrical components (37) formed on a topside surface of a differential pressure sensor transducer die (31) from corrosive particles using a molding compound (39), but which vents both sides of a piezoresistive transducer sensor diaphragm (33) through a first vent hole (42) formed in an exposed die flag (36) and a second vent hole (38) formed in an exposed cap structure (33), enabling the sensor diaphragm (33) to sense differential pressure variations directly or indirectly through a protective gel.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: January 29, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Stephen R. Hooper, James D. MacDonald, William G. McDonald
  • Publication number: 20120304777
    Abstract: A dual port pressure sensor has a lead frame having a flag having a first opening and a second opening. The lead frame has a flag having a first opening and a second opening. An encapsulant holds the lead frame. The encapsulant is over a top of the flag and a bottom of the flag is uncovered by the encapsulant. A first opening in the encapsulant is aligned with and larger than the first opening in the flag, and a second opening in the encapsulant is aligned with the second opening in the flag. A pressure sensor transducer is attached to the bottom of the flag and covers the first opening in the flag and provides an electrically detectable correlation to a pressure differential based on a first pressure received on its top side and a second pressure received on its bottom side. An integrated circuit is attached to the bottom of the flag and is electrically coupled to the pressure sensor. A lid forming an enclosure with the bottom of the flag.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Inventors: STEPHEN R. HOOPER, William G. McDonald
  • Publication number: 20120304452
    Abstract: A method of forming a dual port pressure sensor includes forming a first opening and a second opening in a flag of a lead frame. An encapsulant is molded to hold the lead frame in which the encapsulant is over a top of the flag and a bottom of the flag is uncovered by the encapsulant. A first opening in the encapsulant is aligned with and larger than the first opening in the flag and a second opening in the encapsulant aligned with the second opening in the flag. A pressure sensor transducer is attached to the bottom of the flag to cover the first opening in the flag, wherein the pressure sensor transducer provides an electrically detectable correlation to a pressure differential based on a first pressure received on its top side and a second pressure received on its bottom side. An integrated circuit is attached to the bottom of the flag. The integrated circuit is electrically coupled to the pressure sensor. A lid is attached to the encapsulant to form an enclosure around the bottom of the flag.
    Type: Application
    Filed: June 2, 2011
    Publication date: December 6, 2012
    Inventors: STEPHEN R. HOOPER, William G. McDonald