Patents by Inventor Stephen R. Quake
Stephen R. Quake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20100263732Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.Type: ApplicationFiled: April 16, 2010Publication date: October 21, 2010Applicants: California Institute of Technology, The Regents of the University of CaliforniaInventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
-
Publication number: 20100260717Abstract: Briefly described, embodiments of this disclosure include compositions, pharmaceutical compositions, methods of treating a host infected with a virus from the Flaviviridae family of viruses, methods of identifying a candidate agent for the treatment of hepatitis C virus (HCV) infection, and the like.Type: ApplicationFiled: September 18, 2008Publication date: October 14, 2010Inventors: Stephen R. Quake, Shirit Einav, Jeffrey S. Glenn, Robert McDowell, Wenjin Yang, Doron Gerber, Hadas Dvory-Sobol
-
Publication number: 20100255471Abstract: Methods are provided for diagnosis and prognosis of disease by analyzing expression of a set of genes obtained from single cell analysis. Classification allows optimization of treatment, and determination of whether on whether to proceed with a specific therapy, and how to optimize dose, choice of treatment, and the like. Single cell analysis also provides for the identification and development of therapies which target mutations and/or pathways in disease-state cells.Type: ApplicationFiled: January 20, 2010Publication date: October 7, 2010Inventors: Michael F. Clarke, Stephen R. Quake, Piero D. Dalerba, Huiping Liu, Anne Leyrat, Tomer Kalisky, Maximilian Diehn
-
Publication number: 20100200782Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: September 24, 2009Publication date: August 12, 2010Applicant: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Publication number: 20100196892Abstract: This invention relates in general to a method for molecular fingerprinting. The method can be used for forensic identification (e.g. DNA fingerprinting, especially by VNTR), bacterial typing, and human/animal pathogen diagnosis. More particularly, molecules such as polynucleotides (e.g. DNA) can be assessed or sorted by size in a microfabricated device that analyzes the polynucleotides according to restriction fragment length polymorphism. In a microfabricated device according to the invention, DNA fragments or other molecules can be rapidly and accurately typed using relatively small samples, by measuring for example the signal of an optically-detectable (e.g., fluorescent) reporter associated with the polynucleotide fragments.Type: ApplicationFiled: October 9, 2009Publication date: August 5, 2010Applicant: California Institute of TechnologyInventors: Stephen R. Quake, Hou-Pu Chou
-
Patent number: 7766055Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: GrantFiled: October 31, 2007Date of Patent: August 3, 2010Assignee: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
-
Publication number: 20100187105Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: September 9, 2009Publication date: July 29, 2010Applicant: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Publication number: 20100190151Abstract: The invention provides methods for sequencing a nucleic acid, and particularly methods for synthesizing fluorescently labeled nucleoside triphosphates and related analogs for sequencing nucleic acids.Type: ApplicationFiled: July 27, 2007Publication date: July 29, 2010Inventors: Stephen R. Quake, Christopher J. Lacenere
-
Publication number: 20100175767Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: ApplicationFiled: August 13, 2009Publication date: July 15, 2010Applicant: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
-
Patent number: 7754010Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.Type: GrantFiled: October 31, 2007Date of Patent: July 13, 2010Assignee: California Institute of TechnologyInventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake, Markus M. Enzelberger, Mark L. Adams, Carl L. Hansen
-
Publication number: 20100154890Abstract: High-density microfluidic chips contain plumbing networks with thousands of micromechanical valves and hundreds of individually addressable chambers. These fluidic devices are analogous to electronic integrated circuits fabricated using large scale integration (LSI). A component of these networks is the fluidic multiplexor, which is a combinatorial array of binary valve patterns that exponentially increases the processing power of a network by allowing complex fluid manipulations with a minimal number of inputs. These integrated microfluidic networks can be used to construct a variety of highly complex microfluidic devices, for example the microfluidic analog of a comparator array, and a microfluidic memory storage device resembling electronic random access memories.Type: ApplicationFiled: October 12, 2009Publication date: June 24, 2010Applicant: California Institute of TechnologyInventors: Sebastian J. Maerkl, Todd A. Thorsen, Xiaoyan Bao, Stephen R. Quake, Vincent Studer
-
Publication number: 20100138165Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.Type: ApplicationFiled: January 29, 2010Publication date: June 3, 2010Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Hei-Mun Christina Fan, Stephen R. Quake
-
Publication number: 20100120018Abstract: The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene.Type: ApplicationFiled: August 5, 2009Publication date: May 13, 2010Applicant: California Institute of TechnologyInventors: Stephen R. Quake, Hou-Pu Chou
-
Publication number: 20100112575Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.Type: ApplicationFiled: September 16, 2009Publication date: May 6, 2010Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Hei-Mun Christina Fan, Stephen R. Quake
-
Publication number: 20100104477Abstract: A microfluidic device comprises a matrix of rotary flow reactors. The microfluidic matrix device offers a solution to the “world-to-chip” interface problem by accomplishing two important goals simultaneously: an economy of scale in reagent consumption is achieved, while simultaneously minimizing pipetting steps. N2 independent assays can be performed with only 2N+1 pipetting steps, using a single aliquot of enzyme amortized over all reactors. The chip reduces labor relative to conventional fluid handling techniques by using an order of magnitude less pipetting steps, and reduces cost by consuming two to three orders of magnitude less reagents per reaction. A PCR format has immediate applications in medical diagnosis and gene testing. Beyond PCR, the microfluidic matrix chip provides a universal and flexible platform for biological and chemical assays requiring parsimonious use of precious reagents and highly automated processing.Type: ApplicationFiled: July 23, 2009Publication date: April 29, 2010Applicant: California Institute of TechnologyInventors: Jian Liu, Carl L. Hansen, Stephen R. Quake
-
Patent number: 7704322Abstract: A static fluid and a second fluid are placed into contact along a microfluidic free interface and allowed to mix by diffusion without convective flow across the interface. In accordance with one embodiment of the present invention, the fluids are static and initially positioned on either side of a closed valve structure in a microfluidic channel having a width that is tightly constrained in at least one dimension. The valve is then opened, and no-slip layers at the sides of the microfluidic channel suppress convective mixing between the two fluids along the resulting interface. Applications for microfluidic free interfaces in accordance with embodiments of the present invention include, but are not limited to, protein crystallization studies, protein solubility studies, determination of properties of fluidics systems, and a variety of biological assays such as diffusive immunoassays, substrate turnover assays, and competitive binding assays.Type: GrantFiled: December 11, 2007Date of Patent: April 27, 2010Assignee: California Institute of TechnologyInventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
-
Publication number: 20100069250Abstract: Disclosed is a method for accurately determining the number of template molecules in a library of nucleic acids (e.g., DNA) to be sequenced. The method does not require large amounts of the DNA sample, nor does it require the preparation of a standard curve. The method is especially applicable to methodologies for “sequencing by synthesis,” where quantitation of the starting library is important. The method uses quantitative real time PCR, especially digital PCR, which measures the number of individual molecules in a sample. The present method particularly may use a microfluidic device for running large numbers of PCR reactions. Each PCR reaction is monitored in real time by a primer/probe combination. The forward primer is adapted to contain a sequence not on the adapter but which corresponds to a probe sequence. A short probe which generates fluorescence during the PCR process is used.Type: ApplicationFiled: August 14, 2009Publication date: March 18, 2010Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Richard Allen White, III, Stephen R. Quake, Hei-Mun Christina Fan, Paul Blainey
-
Patent number: 7670429Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.Type: GrantFiled: April 12, 2005Date of Patent: March 2, 2010Assignee: The California Institute of TechnologyInventors: Stephen R. Quake, Carl L. Hansen, James M. Berger
-
Patent number: 7670471Abstract: The invention relates to a microfabricated device and methods of using the device for analyzing and sorting polynucleotide molecules by size.Type: GrantFiled: October 21, 2005Date of Patent: March 2, 2010Assignee: California Institute of TechnologyInventors: Stephen R. Quake, Wayne D. Volksmuth
-
Patent number: 7622081Abstract: The invention relates to a microfabricated device for the rapid detection of DNA, proteins or other molecules associated with a particular disease. The devices and methods of the invention can be used for the simultaneous diagnosis of multiple diseases by detecting molecules (e.g. amounts of molecules), such as polynucleotides (e.g., DNA) or proteins (e.g., antibodies), by measuring the signal of a detectable reporter associated with hybridized polynucleotides or antigen/antibody complex. In the microfabricated device according to the invention, detection of the presence of molecules (i.e., polynucleotides, proteins, or antigen/antibody complexes) are correlated to a hybridization signal from an optically-detectable (e.g. fluorescent) reporter associated with the bound molecules. These hybridization signals can be detected by any suitable means, for example optical, and can be stored for example in a computer as a representation of the presence of a particular gene.Type: GrantFiled: March 15, 2004Date of Patent: November 24, 2009Assignee: California Institute of TechnologyInventors: Hou-Pu Chou, Stephen R. Quake