Patents by Inventor Stephen R. Quake

Stephen R. Quake has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130225435
    Abstract: Methods are provided for diagnosis and prognosis of disease by analyzing expression of a set of genes obtained from single cell analysis. Classification allows optimization of treatment, and determination of whether on whether to proceed with a specific therapy, and how to optimize dose, choice of treatment, and the like. Single cell analysis also provides for the identification and development of therapies which target mutations and/or pathways in disease-state cells.
    Type: Application
    Filed: July 19, 2011
    Publication date: August 29, 2013
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Michael F. Clarke, Stephen R. Quake, Piero D. Dalerba, Huiping Liu, Anne A. Leyrat, Tomer Kalisky, Maximilian Diehn, Michael Rothenberg, Jianbin Wang, Neethan Lobo
  • Patent number: 8486636
    Abstract: The present invention provides microfluidic devices and methods using the same in various types of thermal cycling reactions. Certain devices include a rotary microfluidic channel and a plurality of temperature regions at different locations along the rotary microfluidic channel at which temperature is regulated. Solution can be repeatedly passed through the temperature regions such that the solution is exposed to different temperatures. Other microfluidic devices include an array of reaction chambers formed by intersecting vertical and horizontal flow channels, with the ability to regulate temperature at the reaction chambers. The microfluidic devices can be used to conduct a number of different analyses, including various primer extension reactions and nucleic acid amplification reactions.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: July 16, 2013
    Assignee: California Institute of Technology
    Inventors: Markus M. Enzelberger, Jian Liu, Stephen R. Quake
  • Publication number: 20130157870
    Abstract: The invention generally relates to methods for obtaining a sequence, such as a consensus sequence or a haplotype sequence. In certain embodiments, methods of the invention involve determining an amount of amplifiable nucleic acid present in a sample, partitioning the nucleic acid based upon results of the determining step such that each partitioned portion includes, on average, a subset of unique sequences, sequencing the nucleic acid to obtain sequence reads, and assembling a consensus sequence from the reads.
    Type: Application
    Filed: September 10, 2012
    Publication date: June 20, 2013
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Dmitry Pushkarev, Stephen R. Quake, Ayelet Voskoboynik, Michael Kertesz
  • Publication number: 20130140181
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Application
    Filed: September 4, 2012
    Publication date: June 6, 2013
    Applicant: California Institute of Technology
    Inventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
  • Patent number: 8455258
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: June 4, 2013
    Assignee: California Insitute of Technology
    Inventors: Stephen R. Quake, Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer
  • Patent number: 8445210
    Abstract: A microfluidic device for analyzing and/or sorting biological materials (e.g., molecules such as polynucleotides and polypeptides, including proteins and enzymes; viruses and cells) and methods for its use are provided. The device and methods of the invention are useful for sorting particles, e.g. virions. The invention is also useful for high throughput screening, e.g. combinatorial screening. The microfluidic device comprises a main channel and an inlet region in communication with the main channel at a droplet extrusion region. Droplets of solution containing the biological material are deposited into the main channel through the droplet extrusion region. A fluid different from and incompatible with the solution containing the biological material flows through the main channel so that the droplets containing the biological material do not diffuse or mix.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: May 21, 2013
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Todd Thorsen
  • Patent number: 8426159
    Abstract: A chemostat is described that includes a growth chamber having a plurality of compartments. Each of the compartments may be fluidly isolated from the rest of the growth chamber by one or more actuatable valves. The chemostat may also include a nutrient supply-line to supply growth medium to the growth chamber, and an output port to remove fluids from the growth chamber. Also, a method of preventing biofilm formation in a growth chamber of a chemostat is described. The method may include the steps of adding a lysis agent to a isolated portion of the growth chamber, and reuniting the isolated portion with the rest of the growth chamber.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 23, 2013
    Assignee: California Institute of Technology
    Inventors: Frederick Balagadde, Carl L. Hansen, Emil Kartalov, Stephen R. Quake
  • Publication number: 20130079231
    Abstract: The invention generally relates to methods for obtaining a sequence, such as a consensus sequence or a haplotype sequence. In certain embodiments, methods of the invention involve determining an amount of amplifiable nucleic acid present in a sample, partitioning the nucleic acid based upon results of the determining step such that each partitioned portion includes, on average, a subset of unique sequences, sequencing the nucleic acid to obtain sequence reads, and assembling a consensus sequence from the reads.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 28, 2013
    Applicant: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Dmitry Pushkarev, Stephen R. Quake, Ayelet Voskoboynik, Michael Kertesz
  • Patent number: 8388822
    Abstract: The invention relates to a microfabricated device and methods of using the device for analyzing and sorting polynucleotide molecules by size.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: March 5, 2013
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Wayne D. Volksmuth
  • Patent number: 8382896
    Abstract: High throughput screening of crystallization of a target material is accomplished by simultaneously introducing a solution of the target material into a plurality of chambers of a microfabricated fluidic device. The microfabricated fluidic device is then manipulated to vary the solution condition in the chambers, thereby simultaneously providing a large number of crystallization environments. Control over changed solution conditions may result from a variety of techniques, including but not limited to metering volumes of crystallizing agent into the chamber by volume exclusion, by entrapment of volumes of crystallizing agent determined by the dimensions of the microfabricated structure, or by cross-channel injection of sample and crystallizing agent into an array of junctions defined by intersecting orthogonal flow channels.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: February 26, 2013
    Assignees: California Institute of Technology, The Regents of the University of California
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Publication number: 20130011618
    Abstract: A functionalized photocurable perfluoropolyether is used as a material for fabricating a solvent-resistant microfluidic device. Such solvent-resistant microfluidic devices can be used to control the flow of small amounts of a fluid, such as an organic solvent, and to perform microscale chemical reactions that are not amenable to other polymer-based microfluidic devices.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicants: California Institute of Technology, The University of North Carolina at Chapel Hill
    Inventors: Joseph M. DeSimone, Jason P. Rolland, Stephen R. Quake, Derek A. Schorzman, Jason Yarbrough, Michael Van Dam
  • Publication number: 20130011833
    Abstract: A method for identifying a target nucleic acid bound by an analyte in a sample comprising: (a) contacting said sample with a first probe comprising a first nucleic acid and a first analyte binding domain and a second probe comprising a second nucleic acid and second analyte binding domain, wherein said first and second probes can bind to said analyte, such that said first and second nucleic acid are in spatial proximity to form a complex with said target nucleic acid if said target nucleic acid is bound by said analyte in said sample; (b) incubating said sample with a ligase that can ligate said complex to form a ligated target nucleic acid template; (c) amplifying said target nucleic acid template if present in said sample, and (d) detecting the presence or absence of an amplified target nucleic acid template.
    Type: Application
    Filed: April 26, 2012
    Publication date: January 10, 2013
    Applicant: Agency for Science, Technology and Research
    Inventors: Stephen R. Quake, William F. Burkholder, Tze Howe Charn
  • Publication number: 20120328834
    Abstract: A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
    Type: Application
    Filed: January 27, 2012
    Publication date: December 27, 2012
    Applicant: California Institute of Technology
    Inventors: Marc A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer, Stephen R. Quake
  • Publication number: 20120295810
    Abstract: The disclosure provides methods, devices, compositions and kits for diagnosing or predicting transplant status or outcome in a subject who has received a transplant. The methods comprise determining the presence or absence of one or more nucleic acids from a donor transplant, wherein said one or more nucleic acids from said donor are identified based on a predetermined marker profile, and diagnosing or predicting transplant status or outcome based on the presence or absence of said one or more nucleic acids.
    Type: Application
    Filed: November 5, 2010
    Publication date: November 22, 2012
    Inventors: Stephen R. Quake, Thomas M. Snyder, Hannah Valantine
  • Publication number: 20120295266
    Abstract: This invention relates in general to a method for molecular fingerprinting. The method can be used for forensic identification (e.g. DNA fingerprinting, especially by VNTR), bacterial typing, and human/animal pathogen diagnosis. More particularly, molecules such as polynucleotides (e.g. DNA) can be assessed or sorted by size in a microfabricated device that analyzes the polynucleotides according to restriction fragment length polymorphism. In a microfabricated device according to the invention, DNA fragments or other molecules can be rapidly and accurately typed using relatively small samples, by measuring for example the signal of an optically-detectable (e.g., fluorescent) reporter associated with the polynucleotide fragments.
    Type: Application
    Filed: November 17, 2011
    Publication date: November 22, 2012
    Applicant: California Institute of Technology
    Inventors: Stephen R. Quake, Hou-Pu Chou
  • Publication number: 20120276544
    Abstract: A microfluidic device is provided for analyzing or sorting biological materials, such as polynucleotides, polypeptides, proteins, enzymes, viruses and cells. The invention can be used for high throughput or combinatorial screening. The device comprises a main channel and an inlet channel that communicate at a droplet extrusion region so that droplets of solution are deposited into an immiscible solvent in the main channel. Droplets can thereafter be sorted according to biological material detected in each droplet.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 1, 2012
    Applicant: California Institute of Technology
    Inventors: Stephen R. Quake, Todd Thorsen
  • Publication number: 20120276543
    Abstract: A microfluidic device is provided for analyzing or sorting biological materials, such as polynucleotides, polypeptides, proteins, enzymes, viruses and cells. The invention can be used for high throughput or combinatorial screening. The device comprises a main channel and an inlet channel that communicate at a droplet extrusion region so that droplets of solution are deposited into an immiscible solvent in the main channel. Droplets can thereafter be sorted according to biological material detected in each droplet.
    Type: Application
    Filed: May 18, 2012
    Publication date: November 1, 2012
    Applicant: California Institute of Technology
    Inventors: Stephen R. Quake, Todd Thorsen
  • Patent number: 8296076
    Abstract: Disclosed is a method to achieve digital quantification of DNA (i.e., counting differences between identical sequences) using direct shotgun sequencing followed by mapping to the chromosome of origin and enumeration of fragments per chromosome. The preferred method uses massively parallel sequencing, which can produce tens of millions of short sequence tags in a single run and enabling a sampling that can be statistically evaluated. By counting the number of sequence tags mapped to a predefined window in each chromosome, the over- or under-representation of any chromosome in maternal plasma DNA contributed by an aneuploid fetus can be detected. This method does not require the differentiation of fetal versus maternal DNA. The median count of autosomal values is used as a normalization constant to account for differences in total number of sequence tags is used for comparison between samples and between chromosomes.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 23, 2012
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Hei-Mun Christina Fan, Stephen R. Quake
  • Publication number: 20120241015
    Abstract: The present invention relates to microfluidic devices and methods facilitating the growth and analysis of crystallized materials such as proteins. In accordance with one embodiment, a crystal growth architecture is separated by a permeable membrane from an adjacent well having a much larger volume. The well may be configured to contain a fluid having an identity and concentration similar to the solvent and crystallizing agent employed in crystal growth, with diffusion across the membrane stabilizing that process. Alternatively, the well may be configured to contain a fluid having an identity calculated to affect the crystallization process. In accordance with the still other embodiment, the well may be configured to contain a material such as a cryo-protectant, which is useful in protecting the crystalline material once formed.
    Type: Application
    Filed: October 24, 2011
    Publication date: September 27, 2012
    Inventors: Carl L. Hansen, Stephen R. Quake, James M. Berger
  • Patent number: 8273574
    Abstract: The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: September 25, 2012
    Assignee: California Institute of Technology
    Inventors: Stephen R. Quake, Mark A. Unger, Hou-Pu Chou, Todd A. Thorsen, Axel Scherer