Patents by Inventor Stephen Y. Chou

Stephen Y. Chou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100244324
    Abstract: A mold for imprinting a patterned region by imprint lithography is provided with a peripheral groove around the patterned region. The groove is connected, as by channels through the mold, to a switchable source for gas removal to prevent bubbles and for the application of pressurized gas to separate the mold and substrate. In use, the mold is disposed adjacent the moldable surface and gas is withdrawn from the patterned region through the groove as the mold is pressed toward and into the moldable surface. At or near the end of the imprinting, the process is switched from removal of gas to the application of pressurized gas. The pressurized gas passes through the groove and separates or facilitates separation of the mold and the moldable surface.
    Type: Application
    Filed: June 7, 2010
    Publication date: September 30, 2010
    Applicant: NANONEX CORPORATION
    Inventors: Wei Zhang, Hua Tan, Stephen Y. Chou
  • Publication number: 20100236705
    Abstract: An improved method of bonding involves using direct fluid pressure to press together the layers to be bonded. Advantageously one or more of the layers are sufficiently flexible to provide wide area contact under the fluid pressure. Fluid pressing can be accomplished by sealing an assembly of layers to be bonded and disposing the assembly in a pressurized chamber. It can also be accomplished by subjecting the assembly to jets of pressurized fluid. The result of this fluid pressing is reduction of voids and enhanced uniformity over an enlarged area.
    Type: Application
    Filed: August 16, 2006
    Publication date: September 23, 2010
    Inventor: Stephen Y. Chou
  • Publication number: 20100233309
    Abstract: The present invention relates to release surfaces, particularly release surfaces with fine features to be replicated, and to lithography which may be used to produce integrated circuits and microdevices. More specifically, the present invention relates to a process of using an improved mold or microreplication surface that creates patterns with ultra fine features in a thin film carried on a surface of a substrate.
    Type: Application
    Filed: December 10, 2009
    Publication date: September 16, 2010
    Inventor: Stephen Y. Chou
  • Patent number: 7758794
    Abstract: In accordance with the invention, an article comprising a nanoscale surface pattern, such as a grating, is provided with a nanoscale patterns of reduced edge and/or sidewall roughness. Smooth featured articles, can be fabricated by nanoimprint lithography using a mold having sloped profile molding features. Another approach uses a mold especially fabricated to provide smooth sidewalls of reduced roughness, and a third approach adds a post-imprint smoothing step. These approaches can be utilized individually or in various combinations to make the novel articles.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: July 20, 2010
    Assignee: Princeton University
    Inventors: Stephen Y. Chou, Zhaoning Yu, Wei Wu
  • Publication number: 20100119641
    Abstract: In imprint lithography, a mold having a pattern of projecting and recessed regions is pressed into a moldable surface on a substrate. The thus-imprinted moldable surface is permitted to at least partially harden to retain the imprint, and the substrate and mold are separated. In accordance with the invention, the substrate is separated from the mold by bending laterally distal regions (regions away from the center toward the edges) of the mold transversely away from the interface and transversely restraining the substrate. The mold can then be easily separated from the substrate by transverse displacement. The separation can be facilitated by providing a mold having a lateral dimension that on at least two sides extends beyond the corresponding lateral dimension of the substrate. Alternatively, the substrate can have a greater lateral extent than the mold, and the mold can be restrained. The distal regions of the substrate can be bent in the transverse direction.
    Type: Application
    Filed: January 21, 2010
    Publication date: May 13, 2010
    Inventors: Wei Zhang, Hua Tan, Lin Hu, Stephen Y. Chou
  • Patent number: 7700498
    Abstract: In accordance with the invention, the structure (10A, 10B) of a patterned nanoscale or near nanoscale device (“nanostructure”) is repaired and/or enhanced by liquifying the patterned device in the presence of appropriate guiding conditions for a period of time and then permitting the device to solidify. Advantageous guiding conditions include adjacent spaced apart or contacting surfaces (12, 13A, 13B) to control surface structure and preserve verticality and unconstrained boundaries to permit smoothing of edge roughness. In an advantageous embodiment, a flat planar surface (12) is disposed overlying a patterned nanostructure surface (13A, 13B) and the surface (13A, 13B) is liquified by a high intensity light source to repair or enhance the nanoscale features.
    Type: Grant
    Filed: May 29, 2006
    Date of Patent: April 20, 2010
    Assignee: Princeton University
    Inventors: Stephen Y. Chou, Qiangfei Xia
  • Publication number: 20100081282
    Abstract: In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
    Type: Application
    Filed: May 4, 2009
    Publication date: April 1, 2010
    Inventors: Stephen Y. Chou, Ying Wang, Xiaogan Liang, Yixing Liang
  • Publication number: 20100078855
    Abstract: This invention relates to the fabrication of large area nanoimprint molds having complex patterns with minimal or no use of direct-writing, such as electron beam lithography, ion, laser beam, or mechanical beam lithography. This can be accomplished by forming a pattern of simple nanoscale features and converting the simple features into more complex nanoscale features by a process comprising shadow deposition. The process may also include steps of uniform deposition, etching and smoothing depending on the shape of the complex features.
    Type: Application
    Filed: May 27, 2009
    Publication date: April 1, 2010
    Inventors: Stephen Y. Chou, Peng Can, Wendi Li, Shufung Bai
  • Patent number: 7670770
    Abstract: Nanochannel arrays that enable high-throughput macromolecular analysis are disclosed. Also disclosed are methods of preparing nanochannel arrays and nanofluidic chips. Methods of analyzing macromolecules, such as entire strands of genomic DNA, are also disclosed, as well as systems for carrying out these methods.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: March 2, 2010
    Assignee: The Trustees of Princeton University
    Inventors: Stephen Y. Chou, Han Cao, Robert H. Austin, Zhaoning Yu, Jonas O. Tegenfeldt
  • Publication number: 20100029508
    Abstract: Nanochannel arrays that enable high-throughput macromolecular analysis are disclosed. Also disclosed are methods of preparing nanochannel arrays and nanofluidic chips. Methods of analyzing macromolecules, such as entire strands of genomic DNA, are also disclosed, as well as systems for carrying out these methods.
    Type: Application
    Filed: October 30, 2008
    Publication date: February 4, 2010
    Applicant: THE TRUSTEES OF PRINCETON UNIVERSITY
    Inventors: Robert H. Austin, Zhaoning Yu, Jonas O. Tegenfeldt, Stephen Y. Chou, Han Cao
  • Publication number: 20100009541
    Abstract: In accordance with the invention, a lateral dimension of a microscale device on a substrate is reduced or adjusted by the steps of providing the device with a soft or softened exposed surface; placing a guiding plate adjacent the soft or softened exposed surface; and pressing the guiding plate onto the exposed surface. Under pressure, the soft material flows laterally between the guiding plate and the substrate. Such pressure induced flow can reduce the lateral dimension of line spacing or the size of holes and increase the size of mesas. The same process also can repair defects such as line edge roughness and sloped sidewalls. This process will be referred to herein as pressed self-perfection by liquefaction or P-SPEL.
    Type: Application
    Filed: April 7, 2009
    Publication date: January 14, 2010
    Inventors: Stephen Y. Chou, Ying Wang, Xiaogan Liang, Yixing Liang
  • Patent number: 7635262
    Abstract: Improved apparatus for imprint lithography involves using direct fluid pressure to press a mold into a substrate-supported film. Advantageously the mold and/or substrate are sufficiently flexible to provide wide area contact under the fluid pressure. Fluid pressing can be accomplished by sealing the mold against the film and disposing the resulting assembly in a pressurized chamber. The result of this fluid pressing is enhanced resolution and high uniformity over an enlarged area.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: December 22, 2009
    Assignee: Princeton University
    Inventors: Stephen Y. Chou, Hua Tan, Wei Zhang
  • Patent number: 7588657
    Abstract: In accordance with the invention, substrate-supported linear arrays are formed by the steps of adhering a thin layer of polymer between a pair of substrates and separating the substrates perpendicular to the layer. The polymer layer separates to form substrate-supported polymer gratings on both substrates, each grating having a period proportional to the thickness of the layer. The process has been used to make gratings with periods in the sub-micron range or larger over areas covering square centimeters.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: September 15, 2009
    Assignee: Princeton University
    Inventors: William B Russel, Stephen Y Chou, Leonard F Pease, III, Parikshit A Deshpande
  • Publication number: 20090115094
    Abstract: This application describes a novel method of fabricating narrow (2-100 nm) width and long (greater than 50 micrometers and preferably 1 centimeter or longer) yet continuous hollow channels that allow flow of fluid or gas, or their combination. It can optimally include RIE pattern transfer or an optional sealing of a top surface over the channel. The invention also includes a novel method for making an imprint mold for imprinting the channel.
    Type: Application
    Filed: May 29, 2008
    Publication date: May 7, 2009
    Inventors: Stephen Y. Chou, Xiaogan Liang
  • Publication number: 20090084492
    Abstract: The present invention is directed to a lithographic method and apparatus for creating micrometer sub-micrometer patterns in a thin film coated on a substrate. The invention utilizes the self-formation of periodic, supramolecular pillar arrays (49) in a melt to form the patterns. The self-formation is induced by placing a plate or mask (35) a distance above the polymer films (33). The pillars bridge the plate and the mask, having a height equal to the plate-mask separation and preferably 2-7 times that of the film's initial thickness. If the surface of the mask has a protruding pattern, the pillar array is formed with the edge of the pillar array aligned to the boundary of the mask pattern.
    Type: Application
    Filed: June 11, 2008
    Publication date: April 2, 2009
    Applicant: THE TRUSTEES OF THE UNIVERSITY OF PRINCETON
    Inventors: Stephen Y. Chou, Lei Zhuang
  • Patent number: 7510946
    Abstract: A processing method for use in the fabrication of fabrication of nanoscale electronic, optical, magnetic, biological, and fluidic devices and structures, for filling nanoscale holes and trenches, for planarizing a wafer surface, or for achieving both filling and planarizing of a wafer surface simultaneously. The method has the initial step of depositing a layer of a meltable material on a wafer surface. The material is then pressed using a transparent mold while shining a light pulse through the transparent mold to melt the deposited layer of meltable material. A flow of the molten layer material fills the holes and trenches, and conforms to surface features on the transparent mold. The transparent mold is subsequently removed.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: March 31, 2009
    Assignee: Princeton University
    Inventors: Stephen Y. Chou, Bo Cui, Christopher F. Keimel
  • Patent number: 7482057
    Abstract: The present invention is directed to a lithographic method and apparatus for creating micrometer sub-micrometer patterns in a thin film coated on a substrate. The invention utilizes the self-formation of periodic, supramolecular pillar arrays (49) in a melt to form the patterns. The self-formation is induced by placing a plate or mask (35) a distance above the polymer films (33). The pillars bridge the plate and the mask, having a height equal to the plate-mask separation and preferably 2-7 times that of the film's initial thickness. If the surface of the mask has a protruding pattern, the pillar array is formed with the edge of the pillar array aligned to the boundary of the mask pattern.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: January 27, 2009
    Assignee: The Trustees of The University of Princeton
    Inventors: Stephen Y. Chou, Lei Zhuang
  • Publication number: 20080277826
    Abstract: The invention is directed to new nanoimprint resist and thin-film compositions for use in nanoimprinting lithography. The compositions permit economical high-throughput mass production, using nanoimprint processes, of patterns having sub-200 nm, and even sub-50 nm features.
    Type: Application
    Filed: October 31, 2007
    Publication date: November 13, 2008
    Inventors: Stephen Y. Chou, Zengli Fu, Lei Chen, Haixlong Ge
  • Publication number: 20080248276
    Abstract: In accordance with the invention, the structure (1OA, 10B) of a patterned nanoscale or near nanoscale device (“nanostructure”) is repaired and/or enhanced by liquifying the patterned device in the presence of appropriate guiding conditions for a period of time and then permitting the device to solidify. Advantageous guiding conditions include adjacent spaced apart or contacting surfaces (12, 13A, 13B) to control surface structure and preserve verticality and unconstrained boundaries to permit smoothing of edge roughness. In an advantageous embodiment, a flat planar surface (12) is disposed overlying a patterned nanostructure surface (13A, 13B) and the surface (13A, 13B) is liquified by a high intensity light source to repair or enhance the nanoscale features.
    Type: Application
    Filed: May 29, 2006
    Publication date: October 9, 2008
    Inventors: Stephen Y. Chou, Qiangfei Xia
  • Publication number: 20080230947
    Abstract: In accordance with the invention, an article comprising a nanoscale surface pattern, such as a grating, is provided with a nanoscale patterns of reduced edge and/or sidewall roughness. Smooth featured articles, can be fabricated by nanoimprint lithography using a mold having sloped profile molding features. Another approach uses a mold especially fabricated to provide smooth sidewalls of reduced roughness, and a third approach adds a post-imprint smoothing step. These approaches can be utilized individually or in various combinations to make the novel articles.
    Type: Application
    Filed: February 20, 2008
    Publication date: September 25, 2008
    Applicant: PRINCETON UNIVERSITY
    Inventors: Stephen Y. Chou, Zhaoning Yu, Wei Wu