Patents by Inventor Steve Anderson

Steve Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190021015
    Abstract: A coverage solution recommendation tool may generate prioritized lists of coverage solutions for resolving a network coverage problem at a location. The tool may obtain network parameters of a wireless communication network that provides services to user devices at the location. The tool may further acquire device parameters of the user devices used at the location, as well as collect environment parameters associated with the location. The environment parameters may affect whether a wireless telecommunication carrier is able to leverage additional coverage solutions to provide services at the location. Accordingly, the coverage solution tool may generate a prioritized list of coverage solutions for resolving the network coverage problem based on the parameters.
    Type: Application
    Filed: September 17, 2018
    Publication date: January 17, 2019
    Inventors: Steve Anderson, Robert Dean Cook, Della Jolene Conley
  • Patent number: 10080149
    Abstract: A coverage solution recommendation tool may generate prioritized lists of coverage solutions for resolving a network coverage problem at a location. The tool may obtain network parameters of a wireless communication network that provides services to user devices at the location. The tool may further acquire device parameters of the user devices used at the location, as well as collect environment parameters associated with the location. The environment parameters may affect whether a wireless telecommunication carrier is able to leverage additional coverage solutions to provide services at the location. Accordingly, the coverage solution tool may generate a prioritized list of coverage solutions for resolving the network coverage problem based on the parameters.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: September 18, 2018
    Assignee: T-Mobile USA, Inc.
    Inventors: Steve Anderson, Robert Dean Cook, Della Jolene Conley
  • Patent number: 10078192
    Abstract: The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: September 18, 2018
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Edward T. Landry, Craig M. Standish, Steve Anderson, Joshua A. Zabel, Ronald A. Beck
  • Patent number: 9993278
    Abstract: A method of treating abnormal tissue within a patient includes positioning a delivery cannula within the patient, the delivery cannula having a first electrode disposed on its distal end; introducing an ablation probe through the cannula and out an open distal end thereof, so that a second ablation electrode carried on the ablation probe contacts abnormal tissue within the patient; conveying ablation energy between the first and second ablation electrodes to ablate the abnormal tissue; and introducing a separate medical element, whether a device or a therapeutic agent, through the cannula before or after the ablation process.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 12, 2018
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Robert F. Rioux, Paul DiCarlo, Steve Anderson
  • Publication number: 20170343755
    Abstract: The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
    Type: Application
    Filed: June 9, 2017
    Publication date: November 30, 2017
    Inventors: Edward T. Landry, Craig M. Standish, Steve Anderson, Joshua A. Zabel, Ronald A. Beck
  • Patent number: 9723357
    Abstract: The present disclosure teaches a method and apparatus for allowing a user to select and view one or multiple programs at random whenever he desires and to suspend viewing in the middle of a program to accommodate an interruption and to continue viewing after the interruption without missing any of the program. In addition, previously stored programs may be viewed at accelerated or decelerated speed, or repeated or portions reviewed, to allow the user to review such in other than real time.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: August 1, 2017
    Inventors: J. Carl Cooper, Steve Anderson
  • Patent number: 9721921
    Abstract: A semiconductor device has a plurality of semiconductor die disposed over a carrier. An electrical interconnect, such as a stud bump, is formed over the semiconductor die. The stud bumps are trimmed to a uniform height. A substrate includes a bump over the substrate. The electrical interconnect of the semiconductor die is bonded to the bumps of the substrate while the semiconductor die is disposed over the carrier. An underfill material is deposited between the semiconductor die and substrate. Alternatively, an encapsulant is deposited over the semiconductor die and substrate using a chase mold. The bonding of stud bumps of the semiconductor die to bumps of the substrate is performed using gang reflow or thermocompression while the semiconductor die are in reconstituted wafer form and attached to the carrier to provide a high throughput of the flipchip type interconnect to the substrate.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: August 1, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, HunTeak Lee, HeeJo Chi
  • Patent number: 9678292
    Abstract: The present disclosure relates to a telecommunications distribution hub having a cabinet that defines a primary compartment. The cabinet also includes one or more main doors for accessing the primary compartment. Telecommunications equipment is mounted within the primary compartment. The distribution hub further includes a secondary compartment that can be accessed from an exterior of the cabinet without accessing the primary compartment. A grounding interface is accessible from within the secondary compartment.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: June 13, 2017
    Assignee: COMMSCOPE TECHNOLOGIES LLC
    Inventors: Edward T. Landry, Craig M. Standish, Steve Anderson, Joshua A. Zabel, Ronald A. Beck
  • Publication number: 20170070898
    Abstract: A coverage solution recommendation tool may generate prioritized lists of coverage solutions for resolving a network coverage problem at a location. The tool may obtain network parameters of a wireless communication network that provides services to user devices at the location. The tool may further acquire device parameters of the user devices used at the location, as well as collect environment parameters associated with the location. The environment parameters may affect whether a wireless telecommunication carrier is able to leverage additional coverage solutions to provide services at the location. Accordingly, the coverage solution tool may generate a prioritized list of coverage solutions for resolving the network coverage problem based on the parameters.
    Type: Application
    Filed: September 9, 2015
    Publication date: March 9, 2017
    Inventors: Steve Anderson, Robert Dean Cook, Della Jolene Conley
  • Patent number: 9553162
    Abstract: A semiconductor device has a semiconductor die and an encapsulant deposited over the semiconductor die. A conductive layer can be formed over the encapsulant and the semiconductor die. A transmissive layer can be formed over the semiconductor die. An interconnect structure can be formed through the encapsulant and electrically connected to the conductive layer, whereby the interconnect structure is formed off to only one side of the semiconductor die.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: January 24, 2017
    Assignee: STATS ChipPAC Pte. Ltd.
    Inventors: Thomas J. Strothmann, Steve Anderson, Byung Joon Han, Il Kwon Shim, Heap Hoe Kuan
  • Patent number: 9545662
    Abstract: A molten metal mold and bottom block system, including apparatus and method embodiments, which may include a mold cavity framework with a first side, a second side opposite the first side, a third side, and a fourth side opposite the third side, each side including an inner surface and the inner surfaces defining a mold cavity, and wherein one or more of the sides are movably mounted relative to the second side, and are controllably moved during the casting. This system may also include embodiments wherein the castpart produced has a tapered form at one or both of the castpart ends. Aspects of this invention may be considered to be a castpart shrinkage management system or a castpart form or profile control system due to the advantage of increased controls of castpart form during the casting process.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: January 17, 2017
    Assignee: Wagstaff, Inc.
    Inventors: Michael K. Anderson, Craig Shaber, Steve Anderson, Brett Thielman, Mike Komicki
  • Patent number: 9506011
    Abstract: The present invention provides a method, composition and product by process of pomegranate seed oil. The present invention provides a novel method for the preparation of pomegranate seeds and the subsequent extraction, stabilization and deodorization of pomegranate seed oil. The process maintains key beneficial components of pomegranate seed oil. Effective processing parameters for separating, drying, cleaning, flaking, obtaining the oil from seeds, stabilizing through refining and bleaching and deodorizing the oil are described.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: November 29, 2016
    Assignee: POM Wonderful, LLC
    Inventors: Steve Anderson, Mark Dreher, Rick Green
  • Patent number: 9433572
    Abstract: A cosmetic composition is provided having ingredients that may prevent signs or conditions of aging and/or damage in skin, improve the aesthetic appearance of skin, and promote recovery from environmental stresses. The composition includes natural ingredients, including pomegranate juice concentrate; pomegranate extract; pomegranate seed oil; and at least one pharmaceutically or cosmetically acceptable vehicle.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: September 6, 2016
    Assignee: POM Wonderful, LLC
    Inventors: Mark Dreher, Steve Anderson
  • Publication number: 20160183004
    Abstract: An apparatus includes a first armature and a second armature, wherein the first armature and the second armature are coupled together in a common connection region; a coil, wherein at least a portion of the common connection region extends through the coil, the coil extending around a horizontal axis; one or more magnets; a drive rod coupled to the common connection region; and a diaphragm coupled to the drive rod; wherein electrical excitation of the coil causes the common connection region to move in a vertical direction orthogonal to the horizontal axis and not along the horizontal axis.
    Type: Application
    Filed: November 24, 2015
    Publication date: June 23, 2016
    Inventors: Mekell Jiles, Steve Anderson, Thomas Miller
  • Publication number: 20160163675
    Abstract: A semiconductor device has a plurality of semiconductor die disposed over a carrier. An electrical interconnect, such as a stud bump, is formed over the semiconductor die. The stud bumps are trimmed to a uniform height. A substrate includes a bump over the substrate. The electrical interconnect of the semiconductor die is bonded to the bumps of the substrate while the semiconductor die is disposed over the carrier. An underfill material is deposited between the semiconductor die and substrate. Alternatively, an encapsulant is deposited over the semiconductor die and substrate using a chase mold. The bonding of stud bumps of the semiconductor die to bumps of the substrate is performed using gang reflow or thermocompression while the semiconductor die are in reconstituted wafer form and attached to the carrier to provide a high throughput of the flipchip type interconnect to the substrate.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Applicant: STATS ChipPAC, Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, HunTeak Lee, HeeJo Chi
  • Publication number: 20160134748
    Abstract: The invention generally relates to systems, devices, and methods for testing communication lines. In certain aspects, the invention provides systems and devices that include a digital/analog converter configured to operate with a computer processor and memory to send or receive an analog signal over a communication line that includes a plurality of signals having known frequencies. Inbound receiving sub-systems or devices sample the analog signal and measure a quality of the sampled, digital signal to evaluate the communication line. The key differentiator is the recognition that the human mouth and ear are intrinsically analog without encryption. By locating the test device as close to the user as possible, this system incorporates testing of complex communication streams including numerous variables and transforms (e.g. encryption, Analog to digital, Voice over IP, packet switching, ATM, SONET). Ultimately, it provides a simple interface to convert qualitative analysis to quantitative (numerical) analysis.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Inventors: Roy Stephan, Steve Anderson, Greg Eoyang, Tim Lannan
  • Patent number: 9287204
    Abstract: A semiconductor device has a plurality of semiconductor die disposed over a carrier. An electrical interconnect, such as a stud bump, is formed over the semiconductor die. The stud bumps are trimmed to a uniform height. A substrate includes a bump over the substrate. The electrical interconnect of the semiconductor die is bonded to the bumps of the substrate while the semiconductor die is disposed over the carrier. An underfill material is deposited between the semiconductor die and substrate. Alternatively, an encapsulant is deposited over the semiconductor die and substrate using a chase mold. The bonding of stud bumps of the semiconductor die to bumps of the substrate is performed using gang reflow or thermocompression while the semiconductor die are in reconstituted wafer form and attached to the carrier to provide a high throughput of the flipchip type interconnect to the substrate.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: March 15, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, HunTeak Lee, HeeJo Chi
  • Patent number: 9245770
    Abstract: A semiconductor device has a semiconductor die disposed over a substrate. The semiconductor die and substrate are placed in a chase mold. An encapsulant is deposited over and between the semiconductor die and substrate simultaneous with bonding the semiconductor die to the substrate in the chase mold. The semiconductor die is bonded to the substrate using thermocompression by application of force and elevated temperature. An electrical interconnect structure, such as a bump, pillar bump, or stud bump, is formed over the semiconductor die. A flux material is deposited over the interconnect structure. A solder paste or SOP is deposited over a conductive layer of the substrate. The flux material and SOP provide temporary bond between the semiconductor die and substrate. The interconnect structure is bonded to the SOP. Alternatively, the interconnect structure can be bonded directly to the conductive layer of the substrate, with or without the flux material.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: January 26, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, HeeJo Chi
  • Patent number: 9241065
    Abstract: The invention generally relates to systems, devices, and methods for testing communication lines. In certain aspects, the invention provides systems and devices that include a digital/analog converter configured to operate with a computer processor and memory to send or receive an analog signal over a communication line that includes a plurality of signals having known frequencies. Inbound receiving sub-systems or devices sample the analog signal and measure a quality of the sampled, digital signal to evaluate the communication line. The key differentiator is the recognition that the human mouth and ear are intrinsically analog without encryption. By locating the test device as close to the user as possible, this system incorporates testing of complex communication streams including numerous variables and transforms (e.g. encryption, Analog to digital, Voice over IP, packet switching, ATM, SONET). Ultimately, it provides a simple interface to convert qualitative analysis to quantitative (numerical) analysis.
    Type: Grant
    Filed: February 17, 2015
    Date of Patent: January 19, 2016
    Assignee: Intelligent Decisions, Inc.
    Inventors: Roy Stephan, Steve Anderson, Greg Eoyang, Tim Lannan
  • Patent number: 9240331
    Abstract: A semiconductor device includes a substrate with contact pads. A mask is disposed over the substrate. Aluminum-wettable conductive paste is printed over the contact pads of the substrate. A semiconductor die is disposed over the aluminum-wettable conductive paste. The aluminum-wettable conductive paste is reflowed to form an interconnect structure over the contact pads of the substrate. The contact pads include aluminum. Contact pads of the semiconductor die are disposed over the aluminum-wettable conductive paste. The aluminum-wettable conductive paste is reflowed to form an interconnect structure between the contact pads of the semiconductor die and the contact pads of the substrate. The interconnect structure is formed directly on the contact pads of the substrate and semiconductor die. The contact pads of the semiconductor die are etched prior to reflowing the aluminum-wettable conductive paste. An epoxy pre-dot to maintain a separation between the semiconductor die and substrate.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: January 19, 2016
    Assignee: STATS ChipPAC, Ltd.
    Inventors: KyungMoon Kim, KooHong Lee, JaeHak Yee, YoungChul Kim, Lan Hoang, Pandi C. Marimuthu, Steve Anderson, See Chian Lim, HeeJo Chi