Patents by Inventor Steve Oliver

Steve Oliver has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110157455
    Abstract: A method and apparatus providing a lens master device and use of the same to form a lens template and/or a lens structure. The method includes obtaining a plurality of individual lens masters, each of which has a shaped portion defining at least a portion of a lens structure to be formed. The lens masters are affixed onto a supporting structure to form a lens master device.
    Type: Application
    Filed: March 7, 2011
    Publication date: June 30, 2011
    Inventors: David R. Hembree, Steve Oliver
  • Patent number: 7955946
    Abstract: The invention includes methods of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit, methods of positioning a semiconductor substrate comprising an integrated circuit, methods of processing a semiconductor substrate, and semiconductor devices. In one implementation, a method of determining x-y spatial orientation of a semiconductor substrate comprising an integrated circuit includes providing a semiconductor substrate comprising at least one integrated circuit die. The semiconductor substrate comprises a circuit side, a backside, and a plurality of conductive vias extending from the circuit side to the backside. The plurality of conductive vias on the semiconductor substrate backside is examined to determine location of portions of at least two of the plurality of conductive vias on the semiconductor substrate backside. From the determined location, x-y spatial orientation of the semiconductor substrate is determined.
    Type: Grant
    Filed: May 22, 2006
    Date of Patent: June 7, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Dave Pratt, Kyle Kirby, Steve Oliver, Mark Hiatt
  • Publication number: 20110095429
    Abstract: Methods for forming conductive vias include foiling one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof A barrier layer may be fowled over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
    Type: Application
    Filed: January 6, 2011
    Publication date: April 28, 2011
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Salman Akram, William Mark Hiatt, Steve Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Patent number: 7932179
    Abstract: Present embodiments relate to a semiconductor device having a backside redistribution layer and a method for forming such a layer. Specifically, one embodiment includes providing a substrate comprising a via formed therein. The substrate has a front side and a backside. The embodiment may further include forming a trench on the backside of the substrate, disposing an insulating material in the trench, and forming a trace over the insulating material in the trench.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 26, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Steve Oliver, Warren Farnworth
  • Patent number: 7919230
    Abstract: Methods of forming a lens master wafer having aspheric lens shapes. In one embodiment, a substrate is coated with a polymer material. Isolated sections are formed in the polymer material. The isolated sections are reflowed. The reflowed sections are formed into aspheric lens shapes using a lens stamp.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 5, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Steve Oliver, Shashikant Hegde, Jeff Viens
  • Patent number: 7920342
    Abstract: Accurate lens substrates on a waferscale are obtained by forming a polymer material on a lens surface formed on a lens wafer. The substrate may also be thinned by the glass lens surface forming process at the portion of the lens. The polymer material may have the same or different optical properties (refractive index and dispersion) as the lens wafer.
    Type: Grant
    Filed: July 1, 2008
    Date of Patent: April 5, 2011
    Assignee: Aptina Imaging Corporation
    Inventors: Jacques Duparre, Steve Oliver
  • Patent number: 7916396
    Abstract: A method and apparatus providing a lens master device and use of the same to form a lens template and/or a lens structure. The method includes obtaining a plurality of individual lens masters, each of which has a shaped portion defining at least a portion of a lens structure to be formed. The lens masters are affixed onto a supporting structure to form a lens master device.
    Type: Grant
    Filed: June 27, 2008
    Date of Patent: March 29, 2011
    Assignee: Micron Technology, Inc.
    Inventors: David R. Hembree, Steve Oliver
  • Patent number: 7892972
    Abstract: Methods for forming conductive vias include forming one or more via holes in a substrate. The via holes may be formed with a single mask, with protective layers, bond pads, or other features of the substrate acting as hard masks in the event that a photomask is removed during etching processes. The via holes may be configured to facilitate adhesion of a dielectric coating that includes a low-K dielectric material to the surfaces thereof. A barrier layer may be formed over surfaces of each via hole. A base layer, which may comprise a seed material, may be formed to facilitate the subsequent, selective deposition of conductive material over the surfaces of the via hole. The resulting semiconductor devices, intermediate structures, and assemblies and electronic devices that include the semiconductor devices that result from these methods are also disclosed.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: February 22, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Salman Akram, William Mark Hiatt, Steve Oliver, Alan G. Wood, Sidney B. Rigg, James M. Wark, Kyle K. Kirby
  • Publication number: 20100123260
    Abstract: A method and stamp for forming lenses on a wafer. The stamp includes a mask arranged on a substrate and aligned with a plurality of lens-shaped cavities. The lens-shaped cavities are used to imprint a plurality of lenses into a curable material. The lenses are cured through the mask using radiation. The lenses are separated from the stamp and the uncured material is removed.
    Type: Application
    Filed: November 19, 2008
    Publication date: May 20, 2010
    Inventors: Jacques Duparre, Steve Oliver, Shashikant Hegde
  • Patent number: 7710667
    Abstract: An imaging module and method of fabrication. The method comprises forming a first lens wafer with a plurality of outer negative lenses and forming a second lens wafer with a plurality of inner negative lenses The method further comprises bonding the first lens wafer and second lens wafer to create a bonded stack; forming a plurality of inner positive lenses on the second lens wafer and bonding a spacer wafer to the second lens wafer; and forming a plurality of outer positive lenses on the first lens wafer.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: May 4, 2010
    Assignee: Aptina Imaging Corp.
    Inventors: Steve Oliver, Rick Lake, Shashikant Hegde, Jeff Viens, Jacques Duparre
  • Publication number: 20100002312
    Abstract: Accurate lens substrates on a waferscale are obtained by forming a polymer material on a lens surface formed on a lens wafer. The substrate may also be thinned by the glass lens surface forming process at the portion of the lens. The polymer material may have the same or different optical properties (refractive index and dispersion) as the lens wafer.
    Type: Application
    Filed: July 1, 2008
    Publication date: January 7, 2010
    Inventors: Jacques Duparre, Steve Oliver
  • Publication number: 20090321863
    Abstract: Method and apparatus providing a wafer level fabrication of imager modules in which a permanent carrier protects imager devices on an imager wafer and is used to support a lens wafer.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Inventors: Swarnal Borthakur, Rick Lake, Andy Perkins, Scott Churchwell, Steve Oliver
  • Publication number: 20090323195
    Abstract: A method and apparatus providing a lens master device and use of the same to form a lens template and/or a lens structure. The method includes obtaining a plurality of individual lens masters, each of which has a shaped portion defining at least a portion of a lens structure to be formed. The lens masters are affixed onto a supporting structure to form a lens master device.
    Type: Application
    Filed: June 27, 2008
    Publication date: December 31, 2009
    Inventors: David R. Hembree, Steve Oliver
  • Publication number: 20090323206
    Abstract: An imaging module and method of fabrication. The method comprises forming a first lens wafer with a plurality of outer negative lenses and forming a second lens wafer with a plurality of inner negative lenses The method further comprises bonding the first lens wafer and second lens wafer to create a bonded stack; forming a plurality of inner positive lenses on the second lens wafer and bonding a spacer wafer to the second lens wafer; and forming a plurality of outer positive lenses on the first lens wafer.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Inventors: Steve Oliver, Rick Lake, Shashikant Hegde, Jeff Viens, Jacques Duparre
  • Publication number: 20090325107
    Abstract: Methods of forming a lens master wafer having aspheric lens shapes. In one embodiment, a substrate is coated with a polymer material. Isolated sections are formed in the polymer material. The isolated sections are reflowed. The reflowed sections are formed into aspheric lens shapes using a lens stamp.
    Type: Application
    Filed: June 25, 2008
    Publication date: December 31, 2009
    Inventors: Steve Oliver, Shashikant Hegde, Jeff Viens
  • Patent number: 7626269
    Abstract: The invention includes semiconductor assemblies having two or more dies. An exemplary assembly has circuitry associated with a first die front side electrically connected to circuitry associated with a second die front side. The front side of the second die is adjacent a back side of the first die, and a through wafer interconnect extends through the first die. The through wafer interconnect includes a conductive liner within a via extending through the first die. The conductive liner narrows the via, and the narrowed via is filled with insulative material. The invention also includes methods of forming semiconductor assemblies having two or more dies; and includes electronic systems containing assemblies with two or more dies.
    Type: Grant
    Filed: July 6, 2006
    Date of Patent: December 1, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Steve Oliver, Warren M. Farnworth
  • Publication number: 20090026566
    Abstract: Present embodiments relate to a semiconductor device having a backside redistribution layer and a method for forming such a layer. Specifically, one embodiment includes providing a substrate comprising a via formed therein. The substrate has a front side and a backside. The embodiment may further include forming a trench on the backside of the substrate, disposing an insulating material in the trench, and forming a trace over the insulating material in the trench.
    Type: Application
    Filed: July 27, 2007
    Publication date: January 29, 2009
    Inventors: Steve Oliver, Warren Farnworth
  • Publication number: 20080309900
    Abstract: A method and apparatus to fabricate a patterned structure using a template supported on a carrier. The method includes patterning a material to conform to the patterned structure. The patterned material is cured while remaining on the template. The carrier is removable during the curing process. The template is later removed from the patterned material to obtain the patterned structure. A patterning device is also provided, which is formed by a template and a carrier releasably attached to each other. The template and the carrier can be separated from each other when the patterning device is subjected to curing of the patterned structure.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 18, 2008
    Inventors: Steve Oliver, Ulrich Boettiger
  • Publication number: 20080308893
    Abstract: Methods for fabricating photoimagers, such as complementary metal-oxide-semiconductor (CMOS) imagers, include fabricating image sensing elements, transistors, and other low-elevation features on an active surface of a fabrication substrate, and fabricating contact plugs, conductive lines, external contacts, and other higher-elevation features on the back side of the fabrication substrate. Imagers with image sensing elements and transistors on the active surface and contact plugs that extend through the substrate are also disclosed, as are electronic devices including such imagers.
    Type: Application
    Filed: June 12, 2007
    Publication date: December 18, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Kyle K. Kirby, Steve Oliver
  • Publication number: 20080290435
    Abstract: Image sensor packages, lenses therefore, and methods for fabrication are disclosed. A substrate having through-hole vias may be provided, and an array of lenses may be formed in the vias. The lenses may be formed by molding or by tenting material over the vias. An array of lenses may provide a color filter array (CFA). Filters of the CFA may be formed in the vias, and lenses may be formed in or over the vias on either side of the filters. A substrate may include an array of microlenses, and each microlens of the array may correspond to a pixel of an associated image sensor. In other embodiments, each lens of the array may correspond to an imager array of an image sensor. A wafer having an array of lenses may be aligned with and attached to an imager wafer comprising a plurality of image sensor dice, then singulated to form a plurality of image sensor packages.
    Type: Application
    Filed: May 21, 2007
    Publication date: November 27, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Steve Oliver, Kyle K. Kirby, Warren M. Farnworth, William M. Hiatt, Salman Akram