Patents by Inventor Steven D. Jons

Steven D. Jons has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9289729
    Abstract: A method for making a composite polyamide membrane comprising the step of applying polyfunctional amine and acid halide monomers to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer. The method further includes the step of conducting the interfacial polymerization in the presence of: a carboxylic acid monomer comprising an aliphatic or aromatic moiety substituted with single carboxylic acid functional group and at least one acyl halide functional group, and a tri-hydrocarbyl compound.
    Type: Grant
    Filed: March 16, 2013
    Date of Patent: March 22, 2016
    Inventors: Abhishek Roy, Steven D. Jons, Joseph D. Koob, Martin H. Peery, XiaoHua Sam Qiu, Steven Rosenberg, Ian A. Tomlinson
  • Publication number: 20160031725
    Abstract: A water treatment assembly comprising a spiral wound hyperfiltration membrane module connected to: i) a feed line adapted for connection to a source of pressurized feed water, ii) a permeate line adapted for connection to a dispenser of treated water and iii) a concentrate line adapted for connection with drain; wherein the assembly further includes a pressurizable reservoir with valves for selectively diverting flow of pressurized feed water along the feed line, through the reservoir and returning to the feed line prior to passing through the hyperfiltration membrane module.
    Type: Application
    Filed: April 16, 2014
    Publication date: February 4, 2016
    Inventor: Steven D. Jons
  • Publication number: 20150343334
    Abstract: A hydroclone (10) including a tank (12) having a fluid inlet (14), a filtered fluid outlet (16), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) positioned about an axis (X) and enclosing a plurality of aligned chambers including: i) a vortex chamber (24) in fluid communication with the fluid inlet (14), a filter assembly (26) located within the vortex chamber (24) and enclosing a filtrate chamber (46), a fluid pathway (28) extending from the fluid inlet (14) and about the filter assembly (26) which is adapted to generate a vortex fluid flow about the filter assembly (26), wherein the filtrate chamber (46) is in fluid communication with the filtered fluid outlet (16) such that fluid passing through the filter assembly (26) enters the filtrate chamber (46) and may exit the tank (12) by way of the filtered fluid outlet (16), and ii) an effluent separation chamber (30) in fluid communication with the vortex chamber (24) and which is adapted for receiving unfiltered fluid th
    Type: Application
    Filed: May 22, 2013
    Publication date: December 3, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Steven D. JONS, Santhosh K. RAMALINGAM
  • Patent number: 9192946
    Abstract: A hydroclone including: a vortex chamber (24) in fluid communication with the inlet (14), a process fluid chamber (32) in fluid communication with the process fluid outlet (20), an effluent separation chamber (30) located between the vortex chamber (24) and process fluid chamber (32) and including an outer circumferential surface (23), a vortex flow barrier (34) located between the vortex chamber (24) and the effluent separation chamber (30), an effluent barrier (36) located between the effluent separation chamber (30) and the process fluid chamber (32) including at least one opening (42?) near the outer circumferential surface (23), and an effluent opening (38) centrally located within the effluent separation chamber (30) in fluid communication with the effluent outlet (18); wherein the effluent separation chamber (30) has a median distance (80) between the vortex flow barrier (34) and effluent barrier (36) which is adjustable.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: November 24, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Santhosh K. Ramalingam, Christopher J. Siler, Steven D. Jons
  • Patent number: 9186604
    Abstract: A hydroclone (10) including a tank (12) having a fluid inlet (14), a filtered fluid outlet (16), an effluent outlet (18), a process fluid outlet (20) and an inner peripheral wall (22) positioned about an axis (X) and enclosing a plurality of aligned chambers including: i) a vortex chamber (24) in fluid communication with the fluid inlet (14), a filter assembly (26) located within the vortex chamber (24) and enclosing a filtrate chamber (46), a fluid pathway (28) extending from the fluid inlet (14) and about the filter assembly (26) which is adapted to generate a vortex fluid flow about the filter assembly (26), wherein the filtrate chamber (46) is in fluid communication with the filtered fluid outlet (16) such that fluid passing through the filter assembly (26) enters the filtrate chamber (46) and may exit the tank (12) by way of the filtered fluid outlet (16), and ii) an effluent separation chamber (30) in fluid communication with the vortex chamber (24) and which is adapted for receiving unfiltered fluid th
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: November 17, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, Santhosh K. Ramalingam
  • Publication number: 20150298066
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the steps of applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional acyl halide monomer to a surface of a porous support and interfacially polymerizing the monomers to form a thin film polyamide layer. The method is characterized by including a substituted benzamide monomer within the non-polar solution.
    Type: Application
    Filed: January 3, 2014
    Publication date: October 22, 2015
    Inventors: Abhishek Roy, Tina L. Arrowood, Aman A. Desai, Steven D. Jons, Mou Paul, XiaoHua Qiu, Steven Rosenberg, Ian A. Tomlinson
  • Publication number: 20150224517
    Abstract: A hydroclone including: a vortex chamber (24) in fluid communication with the inlet (14), a process fluid chamber (32) in fluid communication with the process fluid outlet (20), an effluent separation chamber (30) located between the vortex chamber (24) and process fluid chamber (32) and including an outer circumferential surface (23), a vortex flow barrier (34) located between the vortex chamber (24) and the effluent separation chamber (30), an effluent barrier (36) located between the effluent separation chamber (30) and the process fluid chamber (32) including at least one opening (42?) near the outer circumferential surface (23), and an effluent opening (38) centrally located within the effluent separation chamber (30) in fluid communication with the effluent outlet (18); wherein the effluent separation chamber (30) has a median distance (80) between the vortex flow barrier (34) and effluent barrier (36) which is adjustable.
    Type: Application
    Filed: October 9, 2013
    Publication date: August 13, 2015
    Applicants: Filmtec Corporation, The Dow Chemical Company, Dow Global Technologies LLC
    Inventors: Santhosh K. Ramalingam, Christopher J. Siler, Steven D. Jons
  • Patent number: 9101859
    Abstract: Cross-flow filtration systems and corresponding methods for separation particulate matter from liquids. A representative system includes a cross-flow filtration zone (24) in fluid communication with a particulate settling zone (30) and further includes a fluid inlet (14) in fluid communication with one of the zones and a process fluid outlet (20) and in fluid communication with the other zone. A fluid treatment pathway (28) extends from the fluid inlet (14), through the cross-flow filtration and particulate settling zones (24, 30) to the process fluid outlet (20). A filter assembly (26) is located within the cross-flow filtration zone (24) and comprises a membrane surface (44) that isolates a filtrate chamber (46) from the fluid treatment pathway (28), and the filtrate chamber (46) is in fluid communication with a filtered fluid outlet (16). A recirculation pump (Z) in fluid communication with the process fluid outlet (20) and fluid inlet (14).
    Type: Grant
    Filed: May 22, 2013
    Date of Patent: August 11, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, John H. Mallard
  • Patent number: 9073015
    Abstract: A method for making a composite polyamide membrane including the steps of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is includes at least one of the following steps: i) conducting the interfacial polymerization in the presence of a subject monomer comprising at least one carboxylic acid group linked to an aromatic moiety and wherein the aromatic moiety is further substituted with at least one of an acyl halide or anhydride functional group and ii) applying the subject monomer to the thin film polyamide layer. The invention includes many additional embodiments.
    Type: Grant
    Filed: January 3, 2013
    Date of Patent: July 7, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Steven Rosenberg, Steven D. Jons, Joseph D. Koob, Mou Paul, XiaoHua Qiu, Abhishek Roy, Chunming Zhang, Aman A. Desai
  • Publication number: 20150182918
    Abstract: The present invention is directed toward a multi-pass hyperfiltration system (38) including at least two passes (42,44) of spiral wound modules positioned in series along a fluid pathway; including: a first pass is located upstream along the fluid pathway with respect to a second pass such that permeate from the first pass is directed along the fluid pathway (40) to the second pass, and each pass comprises a pressure vessel enclosing at least one spiral wound module, each module including at least one hyper-filtration membrane envelop and feed spacer sheet wound about a permeate collection tube, wherein the system is characterized by the first pass comprising a spiral wound module including a feed spacer sheet having a thickness greater 0.65 mm and the second pass comprising a spiral wound module including a feed spacer sheet having a thickness less than 0.65 mm.
    Type: Application
    Filed: February 20, 2013
    Publication date: July 2, 2015
    Applicant: DOW GLOBAL TECHNOLOGIES LLC
    Inventors: Jon E. Johnson, Markus Busch, Katariina Majamaa, Steven Rosenberg, Steven D. Jons
  • Publication number: 20150174534
    Abstract: A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer including the steps of applying a polyfunctional amine monomer and a combination amine-reactive compounds to a surface of the porous support and reacting the constituents to form a thin film polyamide layer, wherein the amine-reactive compounds include: i) a polyfunctional amine-reactive monomer including two to three amine-reactive moieties selected from acyl halide, sulfonyl halide and anhydride, ii) a polyfunctional amine-reactive monomer including at least four amine-reactive moieties selected from acyl halide, sulfonyl halide and anhydride, and iii) an acid compound including at least on carboxylic acid moiety or salt thereof and at least one amine-reactive moiety selected from acyl halide and sulfonyl halide.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 25, 2015
    Inventors: Mou Paul, Tina L. Arrowood, Robert C. Cieslinski, Steven D. Jons, Steven Rosenberg, Abhishek Roy, Ian A. Tomlinson
  • Publication number: 20150165387
    Abstract: A thin film composite polyamide membrane having a porous support and a thin film polyamide layer comprising a reaction product of m-phenylene diamine (mPD) and trimesoyl chloride (TMC), characterized by the thin film polyamide layer having a critical strain value of less than 10%. In another embodiment, the thin film polyamide layer has a modulus of greater than 0.75 (GPa). In yet another embodiment, the thin film polyamide layer has an equilibrium swelling value of at least 45%. In another embodiment, the thin film polyamide layer has a thickness of at least 230 nm.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 18, 2015
    Inventors: Abhishek Roy, Tina L. Arrowood, Anand S. Badami, Robert C. Cieslinski, David D. Hawn, Steven D. Jons, Mou Paul, Steven Rosenberg, Huang Wu
  • Publication number: 20150157990
    Abstract: A thin film composite polyamide membrane including a porous support and a thin film polyamide layer which is a reaction product of m-phenylene diamine (mPD) and trimesoyl chloride (TMC), wherein the membrane is characterized by the thin film polyamide layer having a dissociated carboxylic acid content of at least 0.18 moles/kg at pH 9.5, and wherein pyrolysis of the thin film polyamide layer at 650 C results in a ratio of responses from a flame ionization detector for fragments produced at 212 m/z and 237 m/z of less than 2.8.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 11, 2015
    Inventors: Abhishek Roy, Tina L. Arrowood, Anand S. Badami, Robert C. Cieslinski, Bruce B. Gerhart, David D. Hawn, Steven D. Jons, Mou Paul, Martin H. Peery, XiaoHua sam Qiu, Mark A. Rickard, Steven Rosenberg, Ian A. Tomlinson, Cheng Li Zu
  • Patent number: 9051417
    Abstract: A method for increasing the solubility of a hydrocarbon compound comprising an aliphatic or arene moiety substituted with at least one acyl halide and at least one carboxylic acid functional group within a hydrocarbon solvent, wherein the method includes the step of preparing a solution comprising: at least 80 v/v % of the hydrocarbon solvent, the hydrocarbon compound, and a tri-hydrocarbyl phosphate compound, wherein the concentration of the hydrocarbon compound is greater than its solubility limit within the solvent but less than its solubility limit in the solution and the hydrocarbon.
    Type: Grant
    Filed: March 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: XiaoHua Sam Qiu, Steven D. Jons, Joseph D. Koob, Martin H. Peery, Steven Rosenberg, Abhishek Roy, Ian A. Tomlinson
  • Patent number: 9051227
    Abstract: An in-situ method for preparing a hydrolyzed, acyl halide-containing compound by combining a reactant including a plurality of acyl halide functional groups containing reactant, a tri-hydrocarbyl phosphate compound and water within a hydrocarbon or halogenated hydrocarbon solvent.
    Type: Grant
    Filed: March 16, 2013
    Date of Patent: June 9, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Steven D. Jons, Joseph D. Koob, Martin H. Peery, XiaoHua Sam Qiu, Steven Rosenberg, Ian A. Tomlinson
  • Publication number: 20150151255
    Abstract: A method for making a composite polyamide membrane comprising a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and polyfunctional acyl halide monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the step of applying the polyfunctional acyl halide monomer to the porous support includes the step of combining the polyfunctional acyl halide monomer with a non-polar solvent at a concentration of at least 0.18 weight percent to form a coating solution which is applied to the surface of the porous support, and wherein the interfacial polymerization is conducted in the presence of a tri-hydrocarbyl phosphate compound which is provided in a molar ratio of at least 0.5:1 with the polyfunctional acyl halide monomer. Many additional embodiments are described including membranes made from the subject method and applications for such membranes.
    Type: Application
    Filed: July 3, 2013
    Publication date: June 4, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Abhishek Roy, Tina L. Arrowood, Robert C. Cieslinski, Derek M. Stevens, David D. Hawn, Steven D. Jons, Mou Paul, Martin H. Peery, Steven Rosenberg, Ian A. Tomlinson
  • Publication number: 20150147470
    Abstract: A method for making a composite polyamide membrane including a porous support and a thin film polyamide layer, wherein the method includes the step of applying a polyfunctional amine monomer and a tetraacyl acyl halide monomer represented by Formula (I) to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer; wherein A is selected from: oxygen (—O—); carbon (—C—); silicon (—Si—); each of which may be unsubstituted or substituted, e.g. with alkyl groups of 1-4 carbon atoms; or a carbonyl group (—C(O)—), X is the same or different and is selected from a halogen, and Y is selected from halogen and hydroxide.
    Type: Application
    Filed: July 3, 2013
    Publication date: May 28, 2015
    Applicant: Dow Global Technologies LLC
    Inventors: Tina L. Arrowood, Aman A. Desai, Steven D. Jons, Mou Paul, Abhishek Roy
  • Publication number: 20150129485
    Abstract: A thin film composite membrane including a porous support and a thin film polyamide layer characterized by having a dissociated carboxylate content of at least 0.45 moles/kg at pH 9.5 and a method for making a composite polyamide applying a polar solution comprising a polyfunctional amine monomer and a non-polar solution comprising a polyfunctional amine-reactive monomer to a surface of the porous support and interfacially polymerizing the monomers to form a thin film polyamide layer, wherein the method is characterized by the non-polar solution comprising at least 0.025 wt % of an acid compound including at least one carboxylic acid moiety and at least one amine-reactive moiety selected from acyl halide and anhydride.
    Type: Application
    Filed: July 3, 2013
    Publication date: May 14, 2015
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, DOW GLOBAL TECHNOLOGIES LLC, THE DOW CHEMICAL COMPANY
    Inventors: Abhishek Roy, Tina L. Arrowood, Robert C. Cieslinski, David D. Hawn, Steven D. Jons, Mou Paul, Martin H. Peery, XiaoHua Qiu, Steven Rosenberg, Ian A. Tomlinson, Chengli Zu
  • Patent number: 9029600
    Abstract: A method for preparing a high purity (e.g. greater than 70 wt. %) mono-hydrolyzed acyl halide compound as a precipitate from solution comprising the steps of preparing a solution comprising: i) at least 80 v/v % of a hydrocarbon solvent, ii) water at a molar concentration greater than its solubility limit within the solvent but less that its solubility limit in solution, iii) a tri-hydrocarbyl phosphate compound, and iv) a polyfunctional acyl halide compound at molar ratio to both water and the tri-hydrocarbyl phosphate compound of at least 1:1.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: May 12, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: XiaoHua S. Qiu, Steven D. Jons, Joseph D. Koob, Martin H. Peery, Steven Rosenberg, Abhishek Roy, Ian A. Tomlinson
  • Patent number: 8991027
    Abstract: The present invention is directed toward spiral wound modules along with methods for making and using the same. Several embodiments are described including methods for making spiral wound filtration modules using membrane sheet provided from a roll, wherein the membrane sheet is unrolled and assembled in a direction parallel to the permeate collection tube of the module.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: March 31, 2015
    Assignee: Dow Global Technologies LLC
    Inventors: Steven D. Jons, Allyn R. Marsh, III