Patents by Inventor Steven G. Johnson

Steven G. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6625364
    Abstract: An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4 &lgr; and 80 &lgr;, wherein &lgr; is a wavelength corresponding to a central frequency in the first frequency range.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: September 23, 2003
    Assignee: OmniGuide Communications
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Patent number: 6597851
    Abstract: A periodic dielectric structure having a three-dimensional photonic bandgap and a method of fabricating same. The structure includes a plurality of stacked first and second two-dimensionally periodic slabs arranged in an alternating sequence. The first two-dimensionally periodic slabs comprising lower dielectric rods surrounded by higher dielectric material. The second two-dimensionally periodic slabs include higher dielectric rods surrounded by lower dielectric material. The rods of the first or second two-dimensionally periodic slabs are laterally offset from the rods of a nearest consecutive two-dimensionally periodic slab of the same type.
    Type: Grant
    Filed: August 6, 2001
    Date of Patent: July 22, 2003
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven G. Johnson, Michelle L. Povinelli, John D. Joannopoulos
  • Publication number: 20030118289
    Abstract: The present invention provides a micro-resonator including a plurality of waveguides forming optic junctions therebetween, with adjacent waveguides having different core permittivities and different cladding permittivities. Adjacent waveguides are mode-matched through adjustments of the core permittivities and the cladding permittivities of the waveguides to reduce or eliminate junction radiation, thereby providing high performance.
    Type: Application
    Filed: October 24, 2002
    Publication date: June 26, 2003
    Inventors: Michael R. Watts, Steven G. Johnson, Hermann A. Haus, John D. Joannopoulos
  • Patent number: 6563981
    Abstract: A method for converting electromagnetic (EM) energy between guided modes of a photonic crystal waveguide having a waveguide axis, the method including: (i) providing the photonic crystal waveguide with a mode coupling segment comprising at least one bend in the waveguide axis, wherein during operation the mode coupling segment converts EM. energy in a first guided mode to a second guided mode; (ii) providing EM energy in the first guided mode of the photonic crystal waveguide; and (iii) allowing the EM energy in the first guided mode to encounter the mode coupling segment to convert at least some of the EM energy in the first guided mode to EM energy in the second guided mode.
    Type: Grant
    Filed: January 31, 2002
    Date of Patent: May 13, 2003
    Assignee: Omniguide Communications
    Inventors: Ori Weisberg, Steven G. Johnson, John D. Joannopolous, Michael Shapiro, Yoel Fink, Mihai Ibanescu
  • Publication number: 20030049003
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: March 13, 2003
    Inventors: Rokan U. Ahmad, Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Lori Pressman, Wesley A. King, Emilia Anderson, John D. Joannopoulos
  • Publication number: 20030044158
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: March 6, 2003
    Inventors: Wesley A. King, Emilia Anderson, Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman
  • Publication number: 20030035633
    Abstract: An on-chip silicon-based optical coupler used to guide light from an optical fiber to a waveguide. The incoming wave is confined vertically by stacks of graded index materials. In the lateral direction, a linear taper formed by etched holes or trenches confines the wave.
    Type: Application
    Filed: May 8, 2002
    Publication date: February 20, 2003
    Inventors: Anuradha M. Agarwal, Lionel C. Kimerling, Hermann A. Haus, Kazumi Wada, Steven G. Johnson, Christina Manolatou, Jurgen Michel, Victor Trinh Nguyen
  • Publication number: 20030031407
    Abstract: A method for converting electromagnetic (EM) energy between guided modes of a photonic crystal waveguide having a waveguide axis, the method including: (i) providing the photonic crystal waveguide with a mode coupling segment comprising at least one bend in the waveguide axis, wherein during operation the mode coupling segment converts EM energy in a first guided mode to a second guided mode; (ii) providing EM energy in the first guided mode of the photonic crystal waveguide; and (iii) allowing the EM energy in the first guided mode to encounter the mode coupling segment to convert at least some of the EM energy in the first guided mode to EM energy in the second guided mode.
    Type: Application
    Filed: January 31, 2002
    Publication date: February 13, 2003
    Inventors: Ori Weisberg, Steven G. Johnson, John D. Joannopolos, Michael Shapiro, Yoel Fink, Mihai Ibanescu
  • Publication number: 20030031443
    Abstract: High index-contrast fiber waveguides, materials for forming high index-contrast fiber waveguides, and applications of high index-contrast fiber waveguides are disclosed.
    Type: Application
    Filed: April 12, 2002
    Publication date: February 13, 2003
    Inventors: Marin Soljacic, Mihai Ibanescu, Torkel Engeness, Maksim Skorobogatiy, Steven G. Johnson, Ori Weisberg, Yoel Fink, Rokan U. Ahmad, Lori Pressman, Wesley A. King, Emilia Anderson, John D. Joannopoulos
  • Publication number: 20030030786
    Abstract: Techniques for monitoring the quality (e.g., optical and mechanical properties) in optical waveguides (e.g., photonic crystal fibers) are disclosed. Additionally, techniques for detecting and localizing defects in the waveguides are also described. Pulses of light are launched into one end of an optical waveguide. The amount of light scattered out of the same end of the waveguide (i.e., a backscattered or reflected signal) is monitored at certain wavelengths specific to the spectral characteristics of the waveguide. Transmission characteristics and defect localization can be determined from the backscattered signal.
    Type: Application
    Filed: February 7, 2002
    Publication date: February 13, 2003
    Inventors: Max Shurgalin, Yoel Fink, Steven G. Johnson, Mihai Ibanescu
  • Publication number: 20030011775
    Abstract: A photonic crystal optical switch having a periodic dielectric structure including at least one input waveguide. First and second waveguide arms branch from the input waveguide in which the relative optical path lengths of electromagnetic radiation within the arms are controlled by stimuli. At least one output waveguide that combines the electromagnetic radiation propagating within the first and second waveguide arms.
    Type: Application
    Filed: May 15, 2002
    Publication date: January 16, 2003
    Inventors: Marin Soljacic, Shanhui Fan, Mihai Ibanescu, Steven G. Johnson, John D. Joannopoulos
  • Publication number: 20020176676
    Abstract: An optical waveguide having a working mode with a tailored dispersion profile, the waveguide including: (i) a dielectric confinement region surrounding a waveguide axis, the confinement region comprising a photonic crystal having at least one photonic bandgap, wherein during operation the confinement region guides EM radiation in a first range of frequencies to propagate along the waveguide axis; (ii) a dielectric core region extending along the waveguide axis and surrounded by the confinement region about the waveguide axis, wherein the core supports at least one guided mode in the first frequency range; and (iii) a dielectric dispersion tailoring region surrounded by the confinement region about the waveguide axis, wherein the dispersion tailoring region introduces one or more additional modes in the first range of frequencies that interact with the guided mode to produce the working mode.
    Type: Application
    Filed: January 25, 2002
    Publication date: November 28, 2002
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Publication number: 20020171823
    Abstract: Techniques for monitoring optical waveguides are disclosed.
    Type: Application
    Filed: March 5, 2002
    Publication date: November 21, 2002
    Inventors: Max Shurgalin, Yoel Fink, Steven G. Johnson, Mihai Ibanescu
  • Publication number: 20020164137
    Abstract: An optical waveguide including: a dielectric core region extending along a waveguide axis; and a dielectric confinement region surrounding the core about the waveguide axis, the confinement region comprising a photonic crystal structure having a photonic band gap, wherein during operation the confinement region guides EM radiation in at least a first range of frequencies to propagate along the waveguide axis, wherein the core has an average refractive index smaller than about 1.3 for a frequency in the first range of frequencies, and wherein the core a diameter in a range between about 4&lgr; and 80&lgr;, wherein &lgr; is a wavelength corresponding to a central frequency in the first frequency range.
    Type: Application
    Filed: January 25, 2002
    Publication date: November 7, 2002
    Inventors: Steven G. Johnson, Mihai Ibanescu, Ori Weisberg, Yoel Fink, John D. Joannopoulos, Maksim Skorobogatiy, Torkel Engeness, Marin Soljacic, Steven A. Jacobs
  • Publication number: 20020126713
    Abstract: Optical components including a laser based on a dielectric waveguide extending along a waveguide axis and having a refractive index cross-section perpendicular to the waveguide axis, the refractive index cross-section supporting an electromagnetic mode having a zero group velocity for a non-zero wavevector along the waveguide axis.
    Type: Application
    Filed: October 25, 2001
    Publication date: September 12, 2002
    Inventors: Mihai Ibanescu, John D. Joannopoulos, Yoel Fink, Steven G. Johnson, Shanhui Fan
  • Publication number: 20020041749
    Abstract: A periodic dielectric structure having a three-dimensional photonic bandgap and a method of fabricating same. The structure includes a plurality of stacked first and second two-dimensionally periodic slabs arranged in an alternating sequence. The first two-dimensionally periodic slabs comprising lower dielectric rods surrounded by higher dielectric material. The second two-dimensionally periodic slabs include higher dielectric rods surrounded by lower dielectric material. The rods of the first or second two-dimensionally periodic slabs are laterally offset from the rods of a nearest consecutive two-dimensionally periodic slab of the same type.
    Type: Application
    Filed: August 6, 2001
    Publication date: April 11, 2002
    Inventors: Steven G. Johnson, Michelle L. Povinelli, John D. Joannopoulos
  • Patent number: 6198860
    Abstract: An optical waveguide structure including a first waveguide, a second waveguide that intersects with the first waveguide, and a photonic crystal resonator system at the intersection of the first and second waveguides. In accordance with another embodiment there is provided an optical waveguide crossing structure including a first waveguide that propagates signals in a first direction, a second waveguide that intersects with the first waveguide and propagates signals in a second direction, and a photonic crystal crossing region at the intersection of the first and second waveguides that prevents crosstalk between the signals of the first and second waveguides.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: March 6, 2001
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, Christina Manolatou, Hermann A. Haus, John D. Joannopoulos
  • Patent number: 6134043
    Abstract: A composite photonic crystal structure comprising a guide crystal configured in a lane having a dielectric periodicity in at least a first direction in the plane; and barrier crystals configured above and below the guide crystal to confine light within the guide crystal, the barrier crystals having a dielectric periodicity in at least a second direction not in the plane. In another embodiment, there is provided a composite photonic crystal structure comprising a guide crystal configured in a plane having a dielectric periodicity in at least one dimension; and a barrier crystal configured adjacent the guide crystal to confine light within the guide crystal, the barrier crystal having a dielectric periodicity in at least two dimensions.
    Type: Grant
    Filed: August 11, 1998
    Date of Patent: October 17, 2000
    Assignee: Massachusetts Institute of Technology
    Inventors: Steven G. Johnson, Shanhui Fan, Pierre R. Villeneuve, Leslie Kolodziejski, John D. Joannopoulos