Patents by Inventor Steven J. Spector
Steven J. Spector has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12055631Abstract: A LiDAR system includes an array of optical emitters, an objective lens optically coupling each optical emitter to a respective unique portion of a field of view, an optical switching network coupled between a laser and the array of optical emitters and a controller coupled to the optical switching network and configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a dynamically varying temporal pattern and to vary the temporal pattern based at least in part on distance to an object within the field of view. The LiDAR system scans different portions of the field of view differently, such as with different laser power levels, different revisit rates and/or different scan patterns, for example based on likelihood of detecting objects of interest in the various portions or based on likely relative importance of objects likely to be found in the various portions.Type: GrantFiled: October 25, 2019Date of Patent: August 6, 2024Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Steven J. Spector, Steven J. Byrnes, Christopher Bessette, Scott Evan Lennox
-
Publication number: 20240230851Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: ApplicationFiled: March 27, 2024Publication date: July 11, 2024Inventors: Michael G. MOEBIUS, Lucas D. BENNEY, Steven J. SPECTOR, Steven J. BYRNES
-
Patent number: 12027779Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.Type: GrantFiled: July 10, 2023Date of Patent: July 2, 2024Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
-
Patent number: 11953625Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a beamsplitter and a lens. The LiDAR system may also include a mask placed in the light path between the beamsplitter and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: GrantFiled: January 27, 2020Date of Patent: April 9, 2024Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
-
Patent number: 11947040Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: GrantFiled: November 18, 2022Date of Patent: April 2, 2024Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
-
Patent number: 11762062Abstract: A LiDAR system emits single mode light from a photonic integrated circuit (PIC) and is capable of receiving a different mode light, or multiple modes of light, into the PIC. Objects in the LiDAR's field of view may reflect light with a mode different from the mode of the light that illuminated the objects. Thus, in some embodiments, a single-mode optical waveguide, a single-mode-multi-mode optical junction, a multi-mode optical waveguide and an array of optical emitters on the PIC are configured to emit into free space light of a single mode from each optical emitter of the array of optical emitters. The multi-mode optical waveguide and the array of optical emitters are configured to receive from the free space light of a mode different from the single mode, or multiple modes, and to couple the light of the different mode or multiple modes into the multi-mode optical waveguide.Type: GrantFiled: May 5, 2021Date of Patent: September 19, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Steven J. Byrnes, Michael G. Moebius, Steven J. Spector
-
Patent number: 11699862Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.Type: GrantFiled: August 20, 2021Date of Patent: July 11, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
-
Patent number: 11688995Abstract: A grating emitter method and system for modulating the polarization of an optical beam, such as one for transmission through free-space or use in an atomic clock.Type: GrantFiled: October 21, 2020Date of Patent: June 27, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Steven J. Spector, Steven J. Byrnes, Robert Lutwak
-
Publication number: 20230079911Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: ApplicationFiled: November 18, 2022Publication date: March 16, 2023Inventors: Michael G. MOEBIUS, Lucas D. BENNEY, Steven J. SPECTOR, Steven J. BYRNES
-
Patent number: 11579253Abstract: A LiDAR system has a field of view and includes a polarization-based waveguide splitter. The splitter includes a first splitter port, a second splitter port and a common splitter port. A laser is optically coupled to the first splitter port via a single-polarization waveguide. An objective lens optically couples each optical emitter of an array of optical emitters to a respective unique portion of the field of view. An optical switching network is coupled via respective dual-polarization waveguides between the common splitter port and the array of optical emitters. An optical receiver is optically coupled to the second splitter port via a dual-polarization waveguide and is configured to receive light reflected from the field of view. A controller, coupled to the optical switching network, is configured to cause the optical switching network to route light from the laser to a sequence of the optical emitters according to a temporal pattern.Type: GrantFiled: November 8, 2019Date of Patent: February 14, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Steven J. Byrnes, Steven J. Spector, Michael G. Moebius
-
Patent number: 11550037Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: GrantFiled: May 1, 2020Date of Patent: January 10, 2023Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
-
Publication number: 20220059950Abstract: An antenna system has a two-dimensional field of view, yet can be implemented on a surface, such as on electronic or photonic integrated circuits. The antenna system includes an array of antennas disposed in a predetermined non-linear pattern and a two-dimensional beamforming network (BFN). The antenna system can be steered/selectively beamformed in two dimensions through beam port selection. The beamforming network is disposed entirely on a single first surface. The beamforming network has a one-dimensional array-side interface disposed on the first surface and a one-dimensional beam-side interface disposed on the first surface. The antennas of the array of antennas are individually communicably coupled to the array-side interface. Segments of the beam-side interface map to respective pixels in the two-dimensional field of view.Type: ApplicationFiled: August 20, 2021Publication date: February 24, 2022Inventors: Julian A. Brown, Benjamin F. Lane, Hannah Clevenson, Lucas D. Benney, Michael G. Moebius, Robin M. A. Dawson, Steven J. Spector
-
Patent number: 11237335Abstract: MEMS-actuated optical switches can be implemented on photonic chips. These switches are compact, essentially planar, simple to implement and include only one moving MEMS component per switch. The switches exhibit low optical loss, require low power to operate, and are simple to control and easy to integrate with other optical devices. Each switch has two optical waveguides that are optically coupled in an ON switch state and not coupled in an OFF switch state. An end or a medial section of one of the two waveguides may translate between the ON and OFF states to affect the coupling. Alternatively, a coupling frustrator may translate between the ON and OFF states to affect the coupling.Type: GrantFiled: September 27, 2019Date of Patent: February 1, 2022Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Jonathan J. Bernstein
-
Publication number: 20210349186Abstract: A LiDAR system emits single mode light from a photonic integrated circuit (PIC) and is capable of receiving a different mode light, or multiple modes of light, into the PIC. Objects in the LiDAR's field of view may reflect light with a mode different from the mode of the light that illuminated the objects. Thus, in some embodiments, a single-mode optical waveguide, a single-mode-multi-mode optical junction, a multi-mode optical waveguide and an array of optical emitters on the PIC are configured to emit into free space light of a single mode from each optical emitter of the array of optical emitters. The multi-mode optical waveguide and the array of optical emitters are configured to receive from the free space light of a mode different from the single mode, or multiple modes, and to couple the light of the different mode or multiple modes into the multi-mode optical waveguide.Type: ApplicationFiled: May 5, 2021Publication date: November 11, 2021Inventors: Steven J. Byrnes, Michael G. Moebius, Steven J. Spector
-
Publication number: 20210341585Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a birefringent prism and a lens. The LiDAR system may also include a mask placed in the light path between the birefringent prism and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: ApplicationFiled: May 1, 2020Publication date: November 4, 2021Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
-
Publication number: 20210231780Abstract: A LiDAR system includes a light source and an arrayed micro-optic configured to receive light from the light source so as to produce and project a two-dimensional array of light spots on a scene. The LiDAR system also includes receiver optics having an array of optical detection sites configured so as to be suitable for establishing a one-to-one correspondence between light spots in the two-dimensional array and optical detection sites in the receiver optics. The LiDAR system further includes a beamsplitter and a lens. The LiDAR system may also include a mask placed in the light path between the beamsplitter and the receiver optics. Alternatively, the LiDAR system may include a controller programmed to activate or deactivate each optical detection site.Type: ApplicationFiled: January 27, 2020Publication date: July 29, 2021Inventors: Michael G. Moebius, Lucas D. Benney, Steven J. Spector, Steven J. Byrnes
-
Patent number: 11048053Abstract: An optical system includes a laser source that provides a beam of light, a photonic integrated circuit (PIC) with an input aperture, and an alignment fixture that has at least one actuator. The alignment fixture may be mounted on the PIC. The optical system is aligned such that the beam of light travels from the laser source to the alignment fixture and from the alignment fixture to the input aperture of the PIC. The alignment fixture can move in at least one direction upon actuation of the at least one actuator to adjust coupling between the laser source and the PIC. The at least one actuator may be a micro-electro-mechanical system (MEMS) structure actuated by an electrical signal.Type: GrantFiled: November 27, 2019Date of Patent: June 29, 2021Assignee: The Charles Stark Draper Laboratory, Inc.Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Sean P. O'Connor
-
Publication number: 20210157067Abstract: An optical system includes a laser source that provides a beam of light, a photonic integrated circuit (PIC) with an input aperture, and an alignment fixture that has at least one actuator. The alignment fixture may be mounted on the PIC. The optical system is aligned such that the beam of light travels from the laser source to the alignment fixture and from the alignment fixture to the input aperture of the PIC. The alignment fixture can move in at least one direction upon actuation of the at least one actuator to adjust coupling between the laser source and the PIC. The at least one actuator may be a micro-electro-mechanical system (MEMS) structure actuated by an electrical signal.Type: ApplicationFiled: November 27, 2019Publication date: May 27, 2021Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Sean P. O'Connor
-
Publication number: 20210119410Abstract: A grating emitter method and system for modulating the polarization of an optical beam, such as one for transmission through free-space or use in an atomic clock.Type: ApplicationFiled: October 21, 2020Publication date: April 22, 2021Inventors: Steven J. Spector, Steven J. Byrnes, Robert Lutwak
-
Publication number: 20210119334Abstract: An optical and radio frequency (RF) antenna includes a substrate and a spiral pattern formed on and/or in the substrate from a metallic material. The spiral pattern has a central region and peripheral region surrounding the central region. The central region is configured to transmit and receive an optical signal at optical and/or infrared wavelengths and the peripheral region is configured to transmit and receive an RF signal at RF wavelengths. The central region and the peripheral region are configured such that an optical gain pattern of the central region and an RF gain pattern of the peripheral region are co-boresighted.Type: ApplicationFiled: October 21, 2019Publication date: April 22, 2021Inventors: Juha-Pekka J. Laine, Amy E. Duwel, Jacob P. Treadway, Robert Larsen, Steven J. Spector, Benjamin F. Lane, Stephen P. Smith