Patents by Inventor Steven Joseph Gregorski

Steven Joseph Gregorski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120105834
    Abstract: Particular embodiments of the present disclosure relate systems and methods for evaluating visible light sources. According to one embodiment, a method of evaluating a visible light source including a semiconductor laser having a gain section, a wavelength selective section, and a phase section includes applying a gain drive signal to the gain section of the semiconductor laser at a gain modulation frequency, and applying a triangular wave drive signal to the wavelength selective section of the semiconductor laser at a wavelength selective modulation frequency that is greater than the gain modulation frequency. The light source emits a plurality of optical output pulses. Output power values of the optical output pulses at a selected wavelength are detected. The output power value of one or more selected output pulses is compared with an output power threshold value to generate an indication of whether the visible light source satisfies an output power specification.
    Type: Application
    Filed: October 29, 2010
    Publication date: May 3, 2012
    Inventor: Steven Joseph Gregorski
  • Patent number: 8139216
    Abstract: Methods of positioning an optical unit in an optical package are provided. According to one method, a partially assembled optical package is provided. The wavelength conversion device within the package comprises a conversion layer having a waveguide portion formed therein. The optical unit is coarse-positioned in the optical package to direct light from the laser diode to the wavelength conversion device in the form of a beam spot on an input face of the wavelength conversion device. The intensity of the frequency-converted optical signal output from the wavelength conversion device is monitored as the position of the optical unit is modified to 1D scan the beam spot along a portion of a crossing axis Y1 that crosses a planar projection of the conversion layer of the wavelength conversion device. Subsequently, the crossing axis Y1 is offset and the intensity monitoring step is repeated as the beam spot is 1D scanned along an offset crossing axis Y2.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 20, 2012
    Assignee: Corning Incorporated
    Inventor: Steven Joseph Gregorski
  • Publication number: 20110122421
    Abstract: Methods of positioning an optical unit in an optical package are provided. According to one method, a partially assembled optical package is provided. The wavelength conversion device within the package comprises a conversion layer having a waveguide portion formed therein. The optical unit is coarse-positioned in the optical package to direct light from the laser diode to the wavelength conversion device in the form of a beam spot on an input face of the wavelength conversion device. The intensity of the frequency-converted optical signal output from the wavelength conversion device is monitored as the position of the optical unit is modified to 1D scan the beam spot along a portion of a crossing axis Y1 that crosses a planar projection of the conversion layer of the wavelength conversion device. Subsequently, the crossing axis Y1 is offset and the intensity monitoring step is repeated as the beam spot is 1D scanned along an offset crossing axis Y2.
    Type: Application
    Filed: November 20, 2009
    Publication date: May 26, 2011
    Inventor: Steven Joseph Gregorski
  • Patent number: 7937971
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: May 10, 2011
    Assignee: Corning Incorporated
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Patent number: 7898752
    Abstract: An optical package is provided comprising a lens system, the lens system comprising an adjustable lens component, a plurality of magnetic elements, and a multi-directional lens flexure. The adjustable lens component is mechanically coupled to a lens mounting portion of the multi-directional lens flexure. The magnetic elements comprise at least one fixed magnetic element and at least one motive magnetic element. The arrangement of the fixed and motive magnetic elements relative to each other forms a first fixed/motive element pair and a second fixed/motive element pair. The motive magnetic element of each fixed/motive element pair is mechanically coupled to a motive portion of the multi-directional lens flexure.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: March 1, 2011
    Assignee: Corning Incorporated
    Inventors: Steven Joseph Gregorski, Matthew Patrick Hammond
  • Publication number: 20100281922
    Abstract: Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
    Type: Application
    Filed: November 26, 2007
    Publication date: November 11, 2010
    Inventors: John Joseph Costello, III, James Henry Faler, Andrey V. Filippov, Steven Joseph Gregorski, Bruce Warren Reding, John Christopher Thomas
  • Publication number: 20100151596
    Abstract: A method is given for aligning an optical package comprising a laser, a wavelength conversion device, at least one adjustable optical component and at least one actuator. The adjustable optical component may be moved to a command position by applying a pulse width modulated signal to the actuator. The command position represents an optimized alignment of the laser and wavelength conversion device. The actual position of the adjustable may be measured by measuring an output of a position measuring circuit, which may measure the voltage amplitude of an oscillation in a resonator tank circuit during an “off” period of the pulse-width modulated signal. The resonator tank circuit may comprise a capacitive element electrically coupled to the electrically conductive coil. The pulse-width modulated signal may then be adjusted to compensate for any difference in the actual position and the command position of the adjustable optical component. Additional embodiments are disclosed and claimed.
    Type: Application
    Filed: December 12, 2008
    Publication date: June 17, 2010
    Inventor: Steven Joseph Gregorski
  • Patent number: 7729404
    Abstract: A method is given for aligning an optical package comprising a laser, a wavelength conversion device, at least one adjustable optical component, and at least one actuator. The adjustable optical component may be moved to a command position by applying a pulse width modulated signal to the actuator. The command position represents an optimized alignment of the laser and wavelength conversion device. The actual position of the adjustable may be measured by measuring an output of a position measuring circuit, which may measure the voltage amplitude of an oscillation in a resonator tank circuit during an “off” period of the pulse-width modulated signal. The resonator tank circuit may comprise a capacitive element electrically coupled to the electrically conductive coil. The pulse-width modulated signal may then be adjusted to compensate for any difference in the actual position and the command position of the adjustable optical component. Additional embodiments are disclosed and claimed.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: June 1, 2010
    Assignee: Corning Incorporated
    Inventor: Steven Joseph Gregorski
  • Publication number: 20100128369
    Abstract: An optical package is provided comprising a lens system, the lens system comprising an adjustable lens component, a plurality of magnetic elements, and a multi-directional lens flexure. The adjustable lens component is mechanically coupled to a lens mounting portion of the multi-directional lens flexure. The magnetic elements comprise at least one fixed magnetic element and at least one motive magnetic element. The arrangement of the fixed and motive magnetic elements relative to each other forms a first fixed/motive element pair and a second fixed/motive element pair. The motive magnetic element of each fixed/motive element pair is mechanically coupled to a motive portion of the multi-directional lens flexure.
    Type: Application
    Filed: November 24, 2008
    Publication date: May 27, 2010
    Inventors: Steven Joseph Gregorski, Matthew Patrick Hammond
  • Publication number: 20100118306
    Abstract: Methods of optimizing optical alignment in an optical package are provided. In one embodiment, the optical package includes a laser diode, a wavelength conversion device, coupling optics positioned along an optical path extending from the laser diode to the wavelength conversion device, and one or more adaptive actuators. The method involves adjusting the optical alignment of the wavelength conversion device in a non-adaptive degree of freedom by referring to a thermally-dependent output intensity profile of the laser diode and a thermally-dependent coupling efficiency profile of the optical package.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 13, 2010
    Inventors: Vikram Bhatia, Steven Joseph Gregorski, Fumio Nagai, Yukihiro Ozeki
  • Publication number: 20090142639
    Abstract: A solid oxide fuel cell assembly is disclosed comprising a felt seal and a spacer capable of limiting a compressive force applied to the seal system. Also disclosed is a solid oxide fuel cell assembly comprising a seal system comprising a felt seal, wherein at least a portion of the felt seal defines a cavity in contact with a ceramic electrolyte sheet and wherein the cavity comprises at least one of a solid metal wire, a powdered metal, a sintered metal, a powdered ceramic, a sintered ceramic, or a combination thereof. Also disclosed is a solid oxide fuel cell assembly comprising a labyrinth seal that defines a cavity in which at least a portion of a ceramic electrolyte sheet is disposed. Also disclosed is a mounted ceramic electrolyte sheet comprising a ceramic electrolyte sheet and a metal frame positioned adjacent thereto, and a labyrinth seal.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventor: Steven Joseph Gregorski
  • Patent number: 7312154
    Abstract: A method of polishing a semiconductor layer formed on a transparent substrate is described, the method including measuring the thickness of the semiconductor from the substrate side of the semiconductor layer simultaneously with the polishing, and using the thickness measurement to modify the polishing.
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: December 25, 2007
    Assignee: Corning Incorporated
    Inventors: Jeffrey Scott Cites, Charles Michael Darcangelo, Steven Joseph Gregorski, Richard Orr Maschmeyer, Mark Andrew Stocker, John Christopher Thomas