Patents by Inventor Steven L. Colletti

Steven L. Colletti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240140992
    Abstract: The present disclosure provides compounds of Formula (I): or a pharmaceutically acceptable salt, solvate, or tautomer thereof, and uses of the same in treating a disease or disorder (e.g., cancer or fibrosis).
    Type: Application
    Filed: February 22, 2022
    Publication date: May 2, 2024
    Inventors: Maria Diarey TIANERO-MCINTOSH, Arlene Atup SY-CORDERO, Bradley Morgan HOVER, Steven L. COLLETTI, Gayatri GOLLAPUDI
  • Publication number: 20230049048
    Abstract: The present application generally relates to identifying gene clusters from long-read genomic sequencing data. The disclosure provides methods, non-transitory computer readable media, and apparatuses for processing long-read genomic sequencing data, performing error corrections, and identifying gene cluster, e.g. biosynthetic gene clusters. The methods, non-transitory computer readable media, and apparatuses described herein can be employed in broad areas of biological applications, such as drug discovery, industrial chemical discovery and production, and basic biological research.
    Type: Application
    Filed: February 5, 2021
    Publication date: February 16, 2023
    Inventors: Zachary CHARLOP-POWERS, Zachary David KURTZ, Bradley Morgan HOVER, Steven L. COLLETTI
  • Publication number: 20220289785
    Abstract: Disclosed herein is a modular composition comprising 1) an oligonucleotide; 2) one or more tetraGalNAc ligands of Formula (I), which may be the same or different; optionally, 3) one or more linkers, which may be the same or different; 4) one or more peptides independently selected from Table 3, which may be the same or different; and optionally, 5) one or more targeting ligands, solubilizing agents, pharmacokinetics enhancing agents, lipids, and/or masking agents.
    Type: Application
    Filed: July 28, 2021
    Publication date: September 15, 2022
    Inventors: David TELLERS, Steven L. COLLETTI, Vadim DUDKIN, Jeffrey AARONSON, Aaron MOMOSE, Thomas Joseph TUCKER, Yu YUAN, Kathleen B. CALATI, Lu TIAN, Rubina G. PARMAR, Anthony W. SHAW, Weimin WANG, Rachel Anne STORR, Marina BUSUEK, Robert A. KOWTONIUK
  • Patent number: 11225471
    Abstract: Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia Formula (I).
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: January 18, 2022
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Duane DeMong, Kevin D. Dykstra, Zhiyong Hu, Michael Miller
  • Patent number: 11117917
    Abstract: Disclosed herein is a modular composition comprising 1) an oligonucleotide; 2) one or more tetraGalNAc ligands of Formula (I), which may be the same or different; optionally, 3) one or more linkers, which may be the same or different; 4) one or more peptides independently selected from Table 3, which may be the same or different; and optionally, 5) one or more targeting ligands, solubilizing agents, pharmacokinetics enhancing agents, lipids, and/or masking agents.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: September 14, 2021
    Assignee: Sirna Therapeutics, Inc.
    Inventors: David Tellers, Steven L. Colletti, Vadim Dudkin, Jeffrey Aaronson, Aaron Momose, Thomas Joseph Tucker, Yu Yuan, Kathleen B. Calati, Lu Tian, Rubina G. Parmar, Anthony W. Shaw, Weimin Wang, Rachel Anne Storr, Marina Busuek, Robert A. Kowtoniuk
  • Patent number: 10968193
    Abstract: Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.
    Type: Grant
    Filed: August 6, 2015
    Date of Patent: April 6, 2021
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Helen Chen, Steven L. Colletti, Duane DeMong, Yan Guo, Michael Miller, Anilkumar Nair, Christopher W. Plummer, Dong Xiao, De-Yi Yang
  • Publication number: 20210094938
    Abstract: Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia Formula (I).
    Type: Application
    Filed: November 12, 2018
    Publication date: April 1, 2021
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Duane DeMong, Kevin D. Dykstra, Zhiyong Hu, Michael Miller
  • Patent number: 10532068
    Abstract: Disclosed herein is a method for inhibiting expression of a gene of a subject comprising administering (1) a composition comprising R-(L)a-(G)b; wherein R is an oligonucleotide selected from the group consisting of DNA, RNA, siRNA, and microRNA; L is a linker and each occurrence of L is independently selected from Table 3; G is a targeting ligand and each occurrence of G is independently selected from Table 4; each of a and b is independently 0, 1, 2, 3 or 4; and (2) a composition comprising (P)c-(L)d-(G)e; wherein P is a peptide and each occurrence of P is independently selected from Table 2; L is a linker and each occurrence of L is independently selected from Table 3; G is a targeting ligand and each occurrence of G is independently selected from Table 4; d is 0, 1, 2, 3, 4, 5 or 6; and each of c and e is independently 1, 2, 3, 4, 5 or 6. Compositions in (1) and (2) can be co-administered or sequentially administered.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: January 14, 2020
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Thomas J. Tucker, David M. Tellers, Boyoung Kim, Rob Burke, Kathleen B. Calati, Matthew G. Stanton, Rubina G. Parmar, Jeffrey G. Aaronson, Weimin Wang
  • Patent number: 10519115
    Abstract: Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.
    Type: Grant
    Filed: November 10, 2014
    Date of Patent: December 31, 2019
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Tesfaye Biftu, Purakkattle Biju, Steven L. Colletti, Qun Dang, Pawan Dhondi, Candido Gude, Hubert Josien, Nam Fung Kar, Anilkumar G. Nair, Ravi P. Nargund, De-Yi Yang, Cheng Zhu
  • Patent number: 10307378
    Abstract: The instant invention provides for novel cationic lipids of Formula A that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain coupled with inclusion of hydrolysable functionality in the lipid chains to enhance the efficiency and tolerability of in vivo delivery of siRNA.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 4, 2019
    Assignee: SIRNA THERAPEUTICS, INC.
    Inventors: Steven L. Colletti, Matthew G. Stanton
  • Publication number: 20190153016
    Abstract: Disclosed herein is a modular composition comprising 1) an oligonucleotide; 2) one or more tetraGalNAc ligands of Formula (I), which may be the same or different; optionally, 3) one or more linkers, which may be the same or different; 4) one or more peptides independently selected from Table 3, which may be the same or different; and optionally, 5) one or more targeting ligands, solubilizing agents, pharmacokinetics enhancing agents, lipids, and/or masking agents.
    Type: Application
    Filed: February 5, 2019
    Publication date: May 23, 2019
    Inventors: David TELLERS, Steven L. COLLETTI, Vadim DUDKIN, Jeffrey AARONSON, Aaron MOMOSE, Thomas Joseph TUCKER, Yu YUAN, Kathleen B. CALATI, Lu TIAN, Rubina G. PARMAR, Anthony W. SHAW, Weimin WANG, Rachel Anne STORR, Marina BUSUEK, Robert A. KOWTONIUK
  • Patent number: 10239957
    Abstract: Disclosed herein is a peptide containing conjugate comprising (P)c-(L)d-(G)e, wherein P is a peptide and each occurance of P is independently selected from Table 2; L is an optional linker and each occurance of L, if present, is independently selected from Table 3; G is a targeting ligand and each occurance of G is independently selected from Table 4; d is 0, 1, 2, 3, 4, 5 or 6; and each of c and e is independently 1, 2, 3, 4, 5 or 6. The conjugate can be administered to a subject either alone or in combination with a composition comprising R-(L)a-(G)b, wherein R is an oligonucleotide as defined herein, to inhibit expression of a gene of the subject.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 26, 2019
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Thomas J. Tucker, David M. Tellers, Boyoung Kim, Rob Burke, Kathleen B. Calati, Matthew G. Stanton, Rubina G. Parmar, Jeffery G. Aaronson, Weimin Wang
  • Patent number: 10221205
    Abstract: Disclosed herein is a modular composition comprising 1) an oligonucleotide; 2) one or more tetraGalNAc ligands of Formula (I), which may be the same or different; optionally, 3) one or more linkers, which may be the same or different; 4) one or more peptides independently selected from Table 3, which may be the same or different; and optionally, 5) one or more targeting ligands, solubilizing agents, pharmacokinetics enhancing agents, lipids, and/or masking agents.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: March 5, 2019
    Assignee: Sirna Therapeutics, Inc.
    Inventors: David Tellers, Steven L. Colletti, Vadim Dudkin, Jeffrey Aaronson, Aaron Momose, Thomas Joseph Tucker, Yu Yuan, Kathleen B. Calati, Lu Tian, Rubina G. Parmar, Anthony W. Shaw, Weimin Wang, Rachel Anne Storr, Marina Busuek, Robert A. Kowtoniuk
  • Publication number: 20190015442
    Abstract: Disclosed herein is a method for inhibiting expression of a gene of a subject comprising administering (1) a composition comprising R-(L)a-(G)b; wherein R is an oligonucleotide selected from the group consisting of DNA, RNA, siRNA, and microRNA; L is a linker and each occurance of L is independently selected from Table 3; G is a targeting ligand and each occurance of G is independently selected from Table 4; each of a and b is independently 0, 1, 2, 3 or 4; and (2) a composition comprising (P)c-(L)d-(G)e; wherein P is a peptide and each occurance of P is independently selected from Table 2; L is a linker and each occurance of L is independently selected from Table 3; G is a targeting ligand and each occurance of G is independently selected from Table 4; d is 0, 1, 2, 3, 4, 5 or 6; and each of c and e is independently 1, 2, 3, 4, 5 or 6. Compositions in (1) and (2) can be co-administered or sequentially administered.
    Type: Application
    Filed: May 8, 2018
    Publication date: January 17, 2019
    Applicant: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Thomas J. Tucker, David M. Tellers, Boyoung Kim, Rob Burke, Kathleen B. Calati, Matthew G. Stanton, Rubina G. Parmar, Jeffrey G. Aaronson, Weimin Wang
  • Publication number: 20180208545
    Abstract: The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids comprising at least one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
    Type: Application
    Filed: March 20, 2018
    Publication date: July 26, 2018
    Applicant: SIRNA THERAPEUTICS, INC.
    Inventors: Steven L. COLLETTI, Matthew G. STANTON
  • Publication number: 20180193279
    Abstract: The instant invention provides for novel cationic lipids of Formula A that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhances efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids with one short lipid chain coupled with inclusion of hydrolysable functionality in the lipid chains to enhance the efficiency and tolerability of in vivo delivery of siRNA.
    Type: Application
    Filed: November 30, 2017
    Publication date: July 12, 2018
    Applicant: SIRNA THERAPEUTICS, INC.
    Inventors: Steven L. COLLETTI, Matthew G. STANTON
  • Patent number: 10010562
    Abstract: Disclosed herein is a method for inhibiting expression of a gene of a subject comprising administering (1) a composition comprising R-(L)a-(G)b; wherein R is an oligonucleotide selected from the group consisting of DNA, RNA, siRNA, and microRNA; L is a linker and each occurrence of L is independently selected from Table 3; G is a targeting ligand and each occurrence of G is independently selected from Table 4; each of a and b is independently 0, 1, 2, 3 or 4; and (2) a composition comprising (P)c-(L)d-(G)e; wherein P is a peptide and each occurrence of P is independently selected from Table 2; L is a linker and each occurrence of L is independently selected from Table 3; G is a targeting ligand and each occurrence of G is independently selected from Table 4; d is 0, 1, 2, 3, 4, 5 or 6; and each of c and e is independently 1, 2, 3, 4, 5 or 6. Compositions in (1) and (2) can be co-administered or sequentially administered.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: July 3, 2018
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Steven L. Colletti, Thomas J. Tucker, David M. Tellers, Boyoung Kim, Rob Burke, Kathleen B. Calati, Matthew G. Stanton, Rubina G. Parmar, Jeffrey G. Aaronson, Weimin Wang
  • Patent number: 9981907
    Abstract: The instant invention provides for novel cationic lipids that can be used in combination with other lipid components such as cholesterol and PEG-lipids to form lipid nanoparticles with oligonucleotides. It is an object of the instant invention to provide a cationic lipid scaffold that demonstrates enhanced efficacy along with lower liver toxicity as a result of lower lipid levels in the liver. The present invention employs low molecular weight cationic lipids comprising at least one short lipid chain to enhance the efficiency and tolerability of in vivo delivery of siRNA.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: May 29, 2018
    Assignee: SIRNA THERAPEUTICS, INC.
    Inventors: Steven L. Colletti, Matthew G. Stanton
  • Patent number: 9932311
    Abstract: Novel compounds of the structural formula (I), and the pharmaceutically acceptable salts thereof, are agonists of G-protein coupled receptor 40 (GPR40) and may be useful in the treatment, prevention and suppression of diseases mediated by the G-protein-coupled receptor 40. The compounds of the present invention may be useful in the treatment of Type 2 diabetes mellitus, and of conditions that are often associated with this disease, including obesity and lipid disorders, such as mixed or diabetic dyslipidemia, hyperlipidemia, hypercholesterolemia, and hypertriglyceridemia.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: April 3, 2018
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Tesfaye Biftu, Purakkattle Biju, Steven L. Colletti, Mingxiang Cui, William K. Hagmann, Bin Hu, Hubert Josien, Nam Fung Kar, Anilkumar Nair, Ravi Nargund, Donald M. Sperbeck, Cheng Zhu
  • Publication number: 20180079769
    Abstract: Disclosed herein is a modular composition comprising 1) an oligonucleotide; 2) one or more tetraGalNAc ligands of Formula (I), which may be the same or different; optionally, 3) one or more linkers, which may be the same or different; 4) one or more peptides independently selected from Table 3, which may be the same or different; and optionally, 5) one or more targeting ligands, solubilizing agents, pharmacokinetics enhancing agents, lipids, and/or masking agents.
    Type: Application
    Filed: November 8, 2017
    Publication date: March 22, 2018
    Inventors: David TELLERS, Steven L. COLLETTI, Vadim DUDKIN, Jeffrey AARONSON, Aaron MOMOSE, Thomas Joseph TUCKER, Yu YUAN, Kathleen B. CALATI, Lu TIAN, Rubina G. PARMAR, Anthony W. SHAW, Weimin WANG, Rachel Anne STORR, Marina BUSUEK, Robert A. KOWTONIUK