Patents by Inventor Steven Longcor
Steven Longcor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11502249Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: GrantFiled: September 22, 2020Date of Patent: November 15, 2022Assignee: Hefei Reliance Memory LimitedInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20210013262Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: ApplicationFiled: September 22, 2020Publication date: January 14, 2021Inventors: Christophe J. CHEVALLIER, Steve Kuo-Ren HSIA, Wayne KINNEY, Steven LONGCOR, Darrell RINERSON, John SANCHEZ, Philip F.S. SWAB, Edmond R. WARD
-
Patent number: 10833125Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: GrantFiled: May 14, 2019Date of Patent: November 10, 2020Assignee: Hefei Reliance Memory LimitedInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Patent number: 10797106Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: GrantFiled: May 14, 2019Date of Patent: October 6, 2020Assignee: Hefei Reliance Memory LimitedInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20190305047Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: ApplicationFiled: May 14, 2019Publication date: October 3, 2019Inventors: Christophe J. CHEVALLIER, Steve Kuo-Ren HSIA, Wayne KINNEY, Steven LONGCOR, Darrell RINERSON, John SANCHEZ, Philip F.S. SWAB, Edmond R. WARD
-
Patent number: 10340312Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: GrantFiled: October 30, 2017Date of Patent: July 2, 2019Assignee: Hefei Reliance Memory LimitedInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20180122857Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: ApplicationFiled: October 30, 2017Publication date: May 3, 2018Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F.S. Swab, Edmond R. Ward
-
Patent number: 9806130Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: GrantFiled: December 29, 2016Date of Patent: October 31, 2017Assignee: Unity Semiconductor CorporationInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20170179197Abstract: A re-writeable non-volatile memory device including a re-writeable non-volatile two-terminal memory element (ME) having tantalum. The ME including a first terminal, a second terminal, a first layer of a conductive metal oxide (CMO), and a second layer in direct contact with the first layer. The second layer and the first layer being operative to store at least one-bit of data as a plurality of resistive states, and the first and second layer are electrically in series with each other and with the first and second terminals.Type: ApplicationFiled: December 29, 2016Publication date: June 22, 2017Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F.S. Swab, Edmond R. Ward
-
Patent number: 9570515Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: GrantFiled: September 10, 2015Date of Patent: February 14, 2017Assignee: UNITY SEMICONDUCTOR CORPORATIONInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20160005793Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: ApplicationFiled: September 10, 2015Publication date: January 7, 2016Inventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F.S. Swab, Edmond R. Ward
-
Patent number: 9159408Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: GrantFiled: January 29, 2014Date of Patent: October 13, 2015Assignee: UNITY SEMICONDUCTOR CORPORATIONInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F. S. Swab, Edmond R. Ward
-
Publication number: 20140211542Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3-LSCoO or LaNiO3-LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: ApplicationFiled: January 29, 2014Publication date: July 31, 2014Applicant: Unity Semiconductor CorporationInventors: Christophe J. Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Philip F.S. Swab, Edmond R. Ward
-
Patent number: 8675389Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3—LSCoO or LaNiO3—LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: GrantFiled: October 13, 2011Date of Patent: March 18, 2014Assignee: Unity Semiconductor CorporationInventors: Christophe Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, Darrell Rinerson, John Sanchez, Jr., Philip Swab, Edmond Ward
-
Patent number: 8611130Abstract: A treated conductive element is provided. A conductive element can be treated by depositing either a reactive metal or a very thin layer of material on the conductive element. The reactive metal (or very thin layer of material) would typically be sandwiched between the conductive element and an electrode. The structure additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays.Type: GrantFiled: November 21, 2011Date of Patent: December 17, 2013Assignee: Unity Semiconductor CorporationInventors: Darrell Rinerson, Christophe Chevallier, Steve Kuo-Ren Hsia, Wayne Kinney, Steven Longcor, John Sanchez, Jr., Philip Swab, Edmond Ward
-
Patent number: 8268667Abstract: Memory cell formation using ion implant isolated conductive metal oxide is disclosed, including forming a bottom electrode below unetched conductive metal oxide layer(s), forming the unetched conductive metal oxide layer(s) including depositing at least one layer of a conductive metal oxide (CMO) material (e.g., PrCaMnOx, LaSrCoOx, LaNiOx, etc.) over the bottom electrode. At least one portion of the layer of CMO is configured to act as a memory element without etching, and performing ion implantation on portions of the layer(s) of CMO to create insulating metal oxide (IMO) regions in the layer(s) of CMO. The IMO regions are positioned adjacent to electrically conductive CMO regions in the unetched layer(s) of CMO and the electrically conductive CMO regions are disposed above and in contact with the bottom electrode and form memory elements operative to store non-volatile data as a plurality of conductivity profiles (e.g., resistive states indicative of stored data).Type: GrantFiled: August 23, 2011Date of Patent: September 18, 2012Assignee: Unity Semiconductor CorporationInventors: Darrell Rinerson, Robin Cheung, David Hansen, Steven Longcor, Rene Meyer, Jonathan Bornstein, Lawrence Schloss
-
Publication number: 20120033481Abstract: A memory cell including conductive oxide electrodes is disclosed. The memory cell includes a memory element operative to store data as a plurality of resistive states. The memory element includes a layer of a conductive metal oxide (CMO) (e.g., a perovskite) in contact with an electrode that may comprise one or more layers of material. At least one of those layers of material can be a conductive oxide (e.g., a perovskite such as LaSrCoO3—LSCoO or LaNiO3—LNO) that is in contact with the CMO. The conductive oxide layer can be selected as a seed layer operative to provide a good lattice match with and/or a lower crystallization temperature for the CMO. The conductive oxide layer may also be in contact with a metal layer (e.g., Pt). The memory cell additionally exhibits non-linear IV characteristics, which can be favorable in certain arrays, such as non-volatile two-terminal cross-point memory arrays.Type: ApplicationFiled: October 13, 2011Publication date: February 9, 2012Applicant: UNITY SEMICONDUCTOR CORPORATIONInventors: DARRELL RINERSON, WAYNE KINNEY, EDMOND R. WARD, STEVE KUO-REN HSIA, STEVEN LONGCOR, CHRISTOPHE J. CHEVALLIER, JOHN SANCHEZ, PHILIP F. S. SWAB
-
Publication number: 20080002473Abstract: A memory including reference cells is provided. The memory has address decoding circuitry and an array of memory cells that are non-volatile and re-writable. Each memory cell has a two terminal memory plug that is capable of experiencing a change in resistance. Sensing circuitry compares activated memory cells to a reference level. The reference level is typically generated by at least one reference cell that can be selected at the same time the memory cell is selected.Type: ApplicationFiled: February 16, 2007Publication date: January 3, 2008Inventors: Darrell Rinerson, Christophe Chevallier, Steven Longcor
-
Publication number: 20080002483Abstract: A memory including reference cells is provided. The memory has address decoding circuitry and an array of memory cells that are non-volatile and re-writable. Each memory cell has a two terminal memory plug that is capable of experiencing a change in resistance. Sensing circuitry compares activated memory cells to a reference level. The reference level is typically generated by at least one reference cell that can be selected at the same time the memory cell is selected.Type: ApplicationFiled: March 16, 2007Publication date: January 3, 2008Inventors: Darrell Rinerson, Christophe Chevallier, Steven Longcor
-
Publication number: 20080002461Abstract: A memory including reference cells is provided. The memory has address decoding circuitry and an array of memory cells that are non-volatile and re-writable. Each memory cell has a two terminal memory plug that is capable of experiencing a change in resistance. Sensing circuitry compares activated memory cells to a reference level. The reference level is typically generated by at least one reference cell that can be selected at the same time the memory cell is selected.Type: ApplicationFiled: June 1, 2007Publication date: January 3, 2008Applicant: UNITY SEMICONDUCTOR CORPORATIONInventors: Darrell Rinerson, Christophe J. Chevallier, Steven Longcor