Patents by Inventor Steven M. Menchen

Steven M. Menchen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160097094
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofslokken KJUS, Astrid Evenroed MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20160097095
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: December 15, 2015
    Publication date: April 7, 2016
    Inventors: Geir FONNUM, Grete Irene MODAHL, Nini Hofslokken KJUS, Astrid Evenroed MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20160002723
    Abstract: A method of conjugating a substrate includes exchanging a counter ion associated with a biomolecule with a lipophilic counter ion to form a biomolecule complex, dispersing the biomolecule complex in a nonaqueous solvent, and coupling the biomolecule complex to a substrate in the presence of the nonaqueous solvent.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Steven M. MENCHEN, Alan Blanchard, Luisa Andruzzi, Shaheer H. Khan, Dmitriy Gremyachinskiy, Alfred Lui, Craig Stolarczyk, Tanya Sokolsky, Prasanna Krishnan Thwar
  • Patent number: 9156925
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: October 13, 2015
    Assignee: Life Technologies Corporation
    Inventors: Geir Fonnum, Grete I. Modahl, Nini H. Kjus, Astrid E. Molteberg, Diem Tran, Jo Aaserud, Talha M. Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Publication number: 20150284496
    Abstract: A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
    Type: Application
    Filed: June 22, 2015
    Publication date: October 8, 2015
    Inventors: Nini Hofslokken KJUS, Geir FONNUM, Bruce BRANCHAUD, Lai-Qiang YING, Steven M. MENCHEN, Dmitriy GREMYACHINSKIY, Hee Chol KANG
  • Publication number: 20150274975
    Abstract: Fluorescent phenyl xanthene dyes are described that comprise any fluorescein, rhodamine or rhodol comprising a particular C9 phenyl ring. One or both of the ortho groups on the lower C9 phenyl ring is ortho substituted with a group selected from alkyl, heteroalkyl, alkoxy, halo, haloalkyl, amino, mercapto, alkylthio, cyano, isocyano, cyanato, mercaptocyanato, nitroso, nitro, azido, sulfeno, sulfinyl, and sulfino. In one embodiment, halo and/or hydroxy groups are used. Optimal dyes contain a lower C9 phenyl ring in which both ortho groups are the same and the lower ring exhibits some form a symmetry relative to an imaginary axis running from the phenyl rings point of attachment to the remainder of the xanthene dye through a point para to the point of attachment. The phenyl xanthene dyes may be activated. Furthermore, the phenyl xanthene dyes may be conjugated to one or more substances including other dyes.
    Type: Application
    Filed: June 16, 2015
    Publication date: October 1, 2015
    Inventors: Joe Y.L. LAM, Steven M. MENCHEN, Ruiming ZOU, Scott C. BENSON
  • Patent number: 9139666
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 22, 2015
    Assignees: Life Technologies Corporation, Life Technologies AS
    Inventors: Geir Fonnum, Grete I. Modahl, Nini H. Kjus, Astrid E. Molteberg, Diem Tran, Jo Aaserud, Talha M. Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Patent number: 9139665
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: November 18, 2013
    Date of Patent: September 22, 2015
    Assignees: Life Technologies Corporation, Life Technologies AS
    Inventors: Geir Fonnum, Grete I. Modahl, Nini H. Kjus, Astrid E. Molteberg, Diem Tran, Jo Aaserud, Talha M. Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Patent number: 9067954
    Abstract: A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 30, 2015
    Assignees: Life Technologies Corporation, Life Technologies AS
    Inventors: Nini H. Kjus, Geir Fonnum, Bruce Branchaud, Lai-Qiang Ying, Steven M. Menchen, Dmitriy Gremyachinskiy, Hee Chol Kang
  • Patent number: 9062080
    Abstract: A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: June 23, 2015
    Assignees: Life Technologies Corporation, Life Technologies AS
    Inventors: Nini H. Kjus, Geir Fonnum, Bruce Branchaud, Lai-Qiang Ying, Steven M. Menchen, Dmitriy Gremyachinskiy, Hee Chol Kang
  • Publication number: 20140142254
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: November 18, 2013
    Publication date: May 22, 2014
    Applicants: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES CORPORATION
    Inventors: Geir FONNUM, Grete I. MODAHL, Nini H. KJUS, Astrid E. MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20140080966
    Abstract: A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Applicants: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES CORPORATION
    Inventors: Nini H. KJUS, Geir FONNUM, Bruce BRANCHAUD, Lai-Qiang Ying, Steven M. MENCHEN, Dmitriy GREMYACHINSKIY, Hee Chol KANG
  • Publication number: 20140073738
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Applicants: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES CORPORATION
    Inventors: Geir FONNUM, Grete I. MODAHL, Nini H. KJUS, Astrid E. MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20140073715
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of mer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Application
    Filed: November 18, 2013
    Publication date: March 13, 2014
    Applicants: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES CORPORATION
    Inventors: Geir FONNUM, Grete I. MODAHL, Nini H. KJUS, Astrid E. MOLTEBERG, Diem TRAN, Jo AASERUD, Talha M. GOKMEN, Steven M. MENCHEN, Carl FULLER, Luisa ANDRUZZI, Wolfgang HINZ
  • Publication number: 20140073756
    Abstract: A silyl protected diacrylamide compound is described. A method of forming such a compound includes mixing a silylation reagent with a hydroxylated diamine compound under first reactive conditions to form a product in a first solution, separating the product from the first solution, and mixing the product with acryloyl chloride under second reactive conditions in a second solution to form a silyl protected diacrylamide compound.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 13, 2014
    Applicants: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES CORPORATION
    Inventors: Nini H. KJUS, Geir FONNUM, Bruce BRANCHAUD, Lai-Qiang Ying, Steven M. MENCHEN, Dmitriy GREMYACHINSKIY, Hee Chol KANG
  • Publication number: 20140057109
    Abstract: A method of making polymer particles includes making an aqueous gel reaction mixture; forming an emulsion comprising dispersed aqueous phase micelles of gel reaction mixture in a continuous phase at a temperature less than about 10° C.; and performing a polymerization reaction in the micelles. Further, the emulsion comprises at least one polymerization initiator in the micelles of gel reaction mixture. The gel reaction mixture can be maintained at a temperature less than about 10° C. when it comprises the polymerization initiator.
    Type: Application
    Filed: October 3, 2013
    Publication date: February 27, 2014
    Applicant: LIFE TECHNOLOGIES CORPORATION
    Inventors: Steven M. MENCHEN, Alexander MASTROIANNI
  • Patent number: 8628975
    Abstract: Extended rhodamine compounds exhibiting favorable fluorescence characteristics having the structure are disclosed. In addition, novel intermediates for synthesis of these dyes are disclosed, such intermediates having the structure In addition, methods of making and using the dyes as fluorescent labels are disclosed.
    Type: Grant
    Filed: February 3, 2012
    Date of Patent: January 14, 2014
    Assignee: Applied Biosystems, LLC
    Inventors: Joe Y. L. Lam, Scott C. Benson, Steven M. Menchen
  • Patent number: 8618161
    Abstract: Fluorescent polymeric materials are disclosed comprising a polymeric particle and one or more lipid soluble rhodamine dyes, comprising the following core structure: wherein R11 and R15 are each H or are each F or Cl; R12, R13, and R14 are each H or are each F or Cl; and wherein at least one of R3?, R3?, R6? and R6? is a (C4-C20) alkyl. The materials are especially useful in the preparation of multicolored microparticles, especially multicolored polystyrene microparticle, for use in the multiplexed analysis of a plurality of analytes in a single sample. When excited by a light source, the materials give off a unique emission based on the nature, concentration and ratio of the dyes therein. Methods of preparing and using said materials are also disclosed.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 31, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Joe Y. L. Lam, Steven M. Menchen, Ruiming Zou, Scott C. Benson
  • Patent number: 8586718
    Abstract: Dark quencher constructs, termed “multi-chromophoric quenchers” are described herein that comprise at least two dark quenching moieties, which can be the same or different, linked together by at least one multivalent linking moiety. The structure of the multi-chromophoric quenchers can be varied to selectively enhance quenching within a specific range of reporter emission wavelengths. This can be accomplished by linking together, into a single molecule, two or more identical quenchers, by reacting the quenchers with a multivalent linker. The structure of the multi-chromophoric quencher can also be varied to quench a broader range of reporter emission wavelengths than previously possible. This can be accomplished by linking together, into a single molecule, two or more different quenchers, by reacting the quenchers with a multivalent linker.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: November 19, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Scott C. Benson, Steven M. Menchen, Krishna G. Upadhya
  • Patent number: 8383841
    Abstract: Fluorescent phenyl xanthene dyes are described that comprise any fluorescein, rhodamine or rhodol comprising a particular C9 phenyl ring. One or both of the ortho groups on the lower C9 phenyl ring is ortho substituted with a group selected from alkyl, heteroalkyl, alkoxy, halo, haloalkyl, amino, mercapto, alkylthio, cyano, isocyano, cyanato, mercaptocyanato, nitroso, nitro, azido, sulfeno, sulfinyl, and sulfino. In one embodiment, halo and/or hydroxy groups are used. Optimal dyes contain a lower C9 phenyl ring in which both ortho groups are the same and the lower ring exhibits some form a symmetry relative to an imaginary axis running from the phenyl rings point of attachment to the remainder of the xanthene dye through a point para to the point of attachment. The phenyl xanthene dyes may be activated. Furthermore, the phenyl xanthene dyes may be conjugated to one or more substances including other dyes.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: February 26, 2013
    Assignee: Applied Biosystems, LLC
    Inventors: Joe Y. L. Lam, Steven M. Menchen, Ruiming Zou, Scott C. Benson