Patents by Inventor Steven Molesa

Steven Molesa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11372143
    Abstract: Fingerprint sensors include a plurality of optical sensor elements, a collimator filter disposed above the plurality of optical sensor elements, and a display disposed above the collimator filter, wherein the display is a fingerprint imaging light source. The collimator filter has a plurality of apertures, and the plurality of optical sensor elements is configured to receive light transmitted through one aperture of the plurality of apertures.
    Type: Grant
    Filed: May 19, 2020
    Date of Patent: June 28, 2022
    Assignee: WILL SEMICONDUCTOR (SHANGHAI) CO. LTD.
    Inventors: Patrick Smith, Paul Wickboldt, Patrick A. Worfolk, Steven Molesa, Young Lee, Richard Klenkler
  • Publication number: 20200278482
    Abstract: Fingerprint sensors include a plurality of optical sensor elements, a collimator filter disposed above the plurality of optical sensor elements, and a display disposed above the collimator filter, wherein the display is a fingerprint imaging light source. The collimator filter has a plurality of apertures, and the plurality of optical sensor elements is configured to receive light transmitted through one aperture of the plurality of apertures.
    Type: Application
    Filed: May 19, 2020
    Publication date: September 3, 2020
    Applicant: WILL SEMICONDUCTOR (SHANGHAI) CO. LTD.
    Inventors: Patrick Smith, Paul Wickboldt, Patrick A. Worfolk, Steven Molesa, Young Lee, Richard Klenkler
  • Patent number: 10705272
    Abstract: Systems and methods for optical imaging are disclosed. The optical fingerprint sensor includes an image sensor array; a collimator filter layer disposed above the image sensor array, the collimator filter layer having an array of apertures; and an illumination layer disposed above the collimator filter layer. The collimator filter layer filters reflected light such that only certain of the reflected light beams reach optical sensing elements in the image sensor array. Employing the collimator filter layer prevents blurring while allowing for a lower-profile image sensor.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: July 7, 2020
    Assignee: WILL SEMICONDUCTOR (SHANGHAI) CO., LTD.
    Inventors: Patrick Smith, Paul Wickboldt, Patrick A. Worfolk, Steven Molesa, Young Lee, Richard Klenkler
  • Patent number: 10049254
    Abstract: A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: August 14, 2018
    Assignee: Synaptics Incorporated
    Inventors: Paul Wickboldt, Gregory Lewis Dean, Erik Jonathon Thompson, Jaswinder Jandu, Patrick Smith, Steven Molesa
  • Publication number: 20180081098
    Abstract: Systems and methods for optical imaging are disclosed. The optical fingerprint sensor includes an image sensor array; a collimator filter layer disposed above the image sensor array, the collimator filter layer having an array of apertures; and an illumination layer disposed above the collimator filter layer. The collimator filter layer filters reflected light such that only certain of the reflected light beams reach optical sensing elements in the image sensor array. Employing the collimator filter layer prevents blurring while allowing for a lower-profile image sensor.
    Type: Application
    Filed: November 27, 2017
    Publication date: March 22, 2018
    Inventors: Patrick Smith, Paul Wickboldt, Patrick A. Worfolk, Steven Molesa, Young Lee, Richard Klenkler
  • Publication number: 20170098115
    Abstract: A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
    Type: Application
    Filed: December 19, 2016
    Publication date: April 6, 2017
    Inventors: Paul WICKBOLDT, Gregory Lewis DEAN, Erik Jonathon THOMPSON, Jaswinder JANDU, Patrick SMITH, Steven MOLESA
  • Publication number: 20160034740
    Abstract: A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
    Type: Application
    Filed: October 12, 2015
    Publication date: February 4, 2016
    Inventors: Paul WICKBOLDT, Gregory Lewis DEAN, Erik Jonathon THOMPSON, Steven MOLESA, Jaswinder JANDU, Patrick SMITH
  • Patent number: 9158958
    Abstract: A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
    Type: Grant
    Filed: July 24, 2014
    Date of Patent: October 13, 2015
    Assignee: Synaptics Incorporated
    Inventors: Paul Wickboldt, Gregory Lewis Dean, Erik Jonathon Thompson, Steven Molesa, Jaswinder Jandu, Patrick Smith
  • Patent number: 9142696
    Abstract: A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: September 22, 2015
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, Steven Molesa, Taeseok Kim
  • Patent number: 9045653
    Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: June 2, 2015
    Assignee: Thin Film Electronics ASA
    Inventors: Erik Scher, Steven Molesa, Joerg Rockenberger, Arvind Kamath, Ikuo Mori, Wenzhuo Guo, Dmitry Karshtedt, Vladimir K. Dioumaev
  • Publication number: 20150091588
    Abstract: A biometric sensor and button assembly and method of making same are disclosed which may comprise: a button housing comprising at least two side walls each forming a vertical load absorbing tower and defining an opening within the button housing; an insert within the opening within the housing; a sensor controller integrated circuit positioned within a cavity formed in one of the insert, the housing or a combination of the insert and the housing; and the insert and the housing cooperating to absorb vertical loading on the button housing, thereby protecting the integrated circuit from excess vertical loading. The assembly and method may also comprise the biometric comprising a fingerprint sensed by the biometric sensor. The assembly and method may also comprise the at least two side walls comprising at least four side walls, the cavity being formed within the bottom of the insert, within the housing, or both.
    Type: Application
    Filed: September 29, 2014
    Publication date: April 2, 2015
    Inventors: Paul WICKBOLDT, Eric JONES, Young Seen LEE, Steven MOLESA, Jeff KELSOE
  • Publication number: 20150030217
    Abstract: A biometric imager may comprise a plurality of sensor element traces formed in or on a sensor substrate which may comprise at least a portion of a display screen defining a biometric sensing area and forming in-active pixel locations; an auxiliary active circuit formed in or on the sensor substrate on the periphery of the biometric sensing area and in direct or indirect electrical contact with the sensor element traces; and providing a signal processing interface to a remotely located controller integrated circuit. The sensor element traces may form a portion of one dimensional linear sensor array or pixel locations in a two dimensional grid array capacitive gap biometric imaging sensor. The auxiliary circuit may provide pixel location selection or pixel signal amplification. The auxiliary circuit may be mounted on a surface of the display screen. The auxiliary circuit further comprising a separate pixel location selection controller circuit.
    Type: Application
    Filed: July 24, 2014
    Publication date: January 29, 2015
    Inventors: Paul WICKBOLDT, Gregory Lewis DEAN, Erik Jonathon THOMPSON, Steven MOLESA, Jaswinder JANDU, Patrick SMITH
  • Patent number: 8912890
    Abstract: The disclosure relates to surveillance and/or identification devices having capacitors connected in parallel or in series, and methods of making and using such devices. Devices with capacitors connected in parallel, where one capacitor is fabricated with a relatively thick capacitor dielectric and another is fabricated with a relatively thin capacitor dielectric achieve both a high-precision capacitance and a low breakdown voltage for relatively easy surveillance tag deactivation. Devices with capacitors connected in series result in increased lateral dimensions of a small capacitor. This makes the capacitor easier to fabricate using techniques that may have relatively limited resolution capabilities.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: December 16, 2014
    Assignee: Thin Film Electronics ASA
    Inventors: Patrick Smith, Criswell Choi, James Montague Cleeves, Vivek Subramanian, Arvind Kamath, Steven Molesa
  • Publication number: 20140352781
    Abstract: A laser contact process is employed to form contact holes to emitters of a solar cell. Doped silicon nanoparticles are formed over a substrate of the solar cell. The surface of individual or clusters of silicon nanoparticles is coated with a nanoparticle passivation film. Contact holes to emitters of the solar cell are formed by impinging a laser beam on the passivated silicon nanoparticles. For example, the laser contact process may be a laser ablation process. In that case, the emitters may be formed by diffusing dopants from the silicon nanoparticles prior to forming the contact holes to the emitters. As another example, the laser contact process may be a laser melting process whereby portions of the silicon nanoparticles are melted to form the emitters and contact holes to the emitters.
    Type: Application
    Filed: August 15, 2014
    Publication date: December 4, 2014
    Inventors: Paul LOSCUTOFF, Steven MOLESA, Taeseok KIM
  • Patent number: 8822301
    Abstract: The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: September 2, 2014
    Assignee: Thin Film Electronics ASA
    Inventors: Arvind Kamath, Erik Scher, Patrick Smith, Aditi Chandra, Steven Molesa
  • Publication number: 20140091909
    Abstract: The present invention relates to surveillance and/or identification devices having capacitors connected in parallel or in series, and methods of making and using such devices. Devices with capacitors connected in parallel, where one capacitor is fabricated with a relatively thick capacitor dielectric and another is fabricated with a relatively thin capacitor dielectric achieve both a high-precision capacitance and a low breakdown voltage for relatively easy surveillance tag deactivation. Devices with capacitors connected in series result in increased lateral dimensions of a small capacitor. This makes the capacitor easier to fabricate using techniques that may have relatively limited resolution capabilities.
    Type: Application
    Filed: October 1, 2012
    Publication date: April 3, 2014
    Inventors: Patrick SMITH, Criswell CHOI, James Montague CLEEVES, Vivek SUBRAMANIAN, Arvind KAMATH, Steven MOLESA
  • Publication number: 20130344301
    Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Inventors: Erik SCHER, Steven MOLESA, Joerg ROCKENBERGER, Arvind KAMATH, Ikuo MORI, Wenzhuo GUO, Dmitry KARSHTEDT, Vladimir DIOUMAEV
  • Patent number: 8530589
    Abstract: Embodiments relate to printing features from an ink containing a material precursor. In some embodiments, the material includes an electrically active material, such as a semiconductor, a metal, or a combination thereof. In another embodiment, the material includes a dielectric. The embodiments provide improved printing process conditions that allow for more precise control of the shape, profile and dimensions of a printed line or other feature. The composition(s) and/or method(s) improve control of pinning by increasing the viscosity and mass loading of components in the ink. An exemplary method thus includes printing an ink comprising a material precursor and a solvent in a pattern on the substrate; precipitating the precursor in the pattern to form a pinning line; substantially evaporating the solvent to form a feature of the material precursor defined by the pinning line; and converting the material precursor to the patterned material.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: September 10, 2013
    Assignee: Kovio, Inc.
    Inventors: Erik Scher, Steven Molesa, Joerg Rockenberger, Arvind Kamath, Ikuo Mori
  • Publication number: 20130189823
    Abstract: The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature.
    Type: Application
    Filed: March 8, 2013
    Publication date: July 25, 2013
    Inventors: Arvind KAMATH, Erik SCHER, Patrick SMITH, Aditi CHANDRA, Steven MOLESA
  • Patent number: 8426905
    Abstract: The present invention relates to electrically active devices (e.g., capacitors, transistors, diodes, floating gate memory cells, etc.) having dielectric, conductor, and/or semiconductor layers with smooth and/or dome-shaped profiles and methods of forming such devices by depositing or printing (e.g., inkjet printing) an ink composition that includes a semiconductor, metal, or dielectric precursor. The smooth and/or dome-shaped cross-sectional profile allows for smooth topological transitions without sharp steps, preventing feature discontinuities during deposition and allowing for more complete step coverage of subsequently deposited structures. The inventive profile allows for both the uniform growth of oxide layers by thermal oxidation, and substantially uniform etching rates of the structures. Such oxide layers may have a uniform thickness and provide substantially complete coverage of the underlying electrically active feature.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: April 23, 2013
    Assignee: Kovio, Inc.
    Inventors: Arvind Kamath, Erik Scher, Patrick Smith, Aditi Chandra, Steven Molesa