Patents by Inventor Steven P. Laur

Steven P. Laur has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170133933
    Abstract: A controller for controlling operation of a switching regulator including a modulator, a discontinuous conduction mode (DCM) controller, an audible DCM (ADCM) controller, and a sub-sonic discontinuous conduction mode (SBDCM) controller. The modulator generally operates in a continuous conduction mode. The DCM controller modifies operation to DCM during low loads. The ADCM controller detects when the switching frequency is less than a super-sonic frequency threshold and modifies operation to maintain the switching frequency at a super-sonic frequency level. The SBDCM controller detects a sub-sonic operating condition during ADCM operation and responsively inhibits operation of the ADCM mode controller to allow a SBDCM mode within a sub-sonic switching frequency range. The SBDCM operating mode allows for efficient connected standby operation. The SBDCM controller allows operation to return to other modes when the switching frequency increases above the subsonic level.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 11, 2017
    Inventors: M. Jason HOUSTON, Steven P. LAUR
  • Patent number: 9548659
    Abstract: A controller for controlling operation of a switching regulator including a modulator, a discontinuous conduction mode (DCM) controller, an audible DCM (ADCM) controller, and a sub-sonic discontinuous conduction mode (SBDCM) controller. The modulator generally operates in a continuous conduction mode. The DCM controller modifies operation to DCM during low loads. The ADCM controller detects when the switching frequency is less than a super-sonic frequency threshold and modifies operation to maintain the switching frequency at a super-sonic frequency level. The SBDCM controller detects a sub-sonic operating condition during ADCM operation and responsively inhibits operation of the ADCM mode controller to allow a SBDCM mode within a sub-sonic switching frequency range. The SBDCM operating mode allows for efficient connected standby operation. The SBDCM controller allows operation to return to other modes when the switching frequency increases above the sub-sonic level.
    Type: Grant
    Filed: July 31, 2015
    Date of Patent: January 17, 2017
    Assignee: INTERSIL AMERICAS LLC
    Inventors: M. Jason Houston, Steven P. Laur
  • Patent number: 9342086
    Abstract: A modulator for controlling a switch circuit of a voltage regulator, including a sense circuit that provides a current sense signal indicative of current through the output inductor, a ramp circuit that develops a ramp voltage on a ramp node using the current sense signal, an error circuit that develops an error signal indicative of output voltage error and that injects the error signal into the ramp node to adjust the ramp voltage, a comparator circuit that compares the ramp voltage with a fixed control voltage to develop a compare signal, and a logic circuit that uses the compare signal to develop a pulse control signal that controls the switch circuit. The output voltage error may be determined by comparing the output voltage with a reference voltage and converting the error voltage to a current applied to the ramp node.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: May 17, 2016
    Assignee: INTERSIL AMERICAS LLC
    Inventors: M. Jason Houston, Steven P. Laur, Rhys S. A. Philbrick
  • Patent number: 9300202
    Abstract: A regulator system with dynamic droop including a regulator control network which is adapted to control regulation of an output voltage to a reference level, a DC droop network which provides a droop signal to modify the reference level based on output load according to a predetermined DC load line, and a dynamic droop network which adjusts the droop signal to delay recovery to the predetermined DC load line within an AC load line tolerance in response to a load transient. A transient reduction network may be included to reduce transient overshoot for load insertion or release depending upon duty cycle type. The dynamic droop network adjusts the droop signal to optimize utilization of an AC delay parameter while transitioning between an AC offset voltage allowance and the predetermined DC load line.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: March 29, 2016
    Assignee: INTERSIL AMERICAS LLC
    Inventors: Steven P. Laur, M. Jason Houston, Rhys S. A. Philbrick, Thomas A. Jochum
  • Publication number: 20160062375
    Abstract: A modulator for controlling a switch circuit of a voltage regulator, including a sense circuit that provides a current sense signal indicative of current through the output inductor, a ramp circuit that develops a ramp voltage on a ramp node using the current sense signal, an error circuit that develops an error signal indicative of output voltage error and that injects the error signal into the ramp node to adjust the ramp voltage, a comparator circuit that compares the ramp voltage with a fixed control voltage to develop a compare signal, and a logic circuit that uses the compare signal to develop a pulse control signal that controls the switch circuit. The output voltage error may be determined by comparing the output voltage with a reference voltage and converting the error voltage to a current applied to the ramp node.
    Type: Application
    Filed: December 15, 2014
    Publication date: March 3, 2016
    Inventors: M. JASON HOUSTON, STEVEN P. LAUR, RHYS S.A. PHILBRICK
  • Publication number: 20150349643
    Abstract: A controller for controlling operation of a switching regulator including a modulator, a discontinuous conduction mode (DCM) controller, an audible DCM (ADCM) controller, and a sub-sonic discontinuous conduction mode (SBDCM) controller. The modulator generally operates in a continuous conduction mode. The DCM controller modifies operation to DCM during low loads. The ADCM controller detects when the switching frequency is less than a super-sonic frequency threshold and modifies operation to maintain the switching frequency at a super-sonic frequency level. The SBDCM controller detects a sub-sonic operating condition during ADCM operation and responsively inhibits operation of the ADCM mode controller to allow a SBDCM mode within a sub-sonic switching frequency range. The SBDCM operating mode allows for efficient connected standby operation. The SBDCM controller allows operation to return to other modes when the switching frequency increases above the sub-sonic level.
    Type: Application
    Filed: July 31, 2015
    Publication date: December 3, 2015
    Inventors: M. JASON HOUSTON, STEVEN P. LAUR
  • Patent number: 9136763
    Abstract: A controller for controlling operation of a switching regulator including a modulator, a discontinuous conduction mode (DCM) controller, an audible DCM (ADCM) controller, and a sub-sonic discontinuous conduction mode (SBDCM) controller. The modulator generally operates in a continuous conduction mode. The DCM controller modifies operation to DCM during low loads. The ADCM controller detects when the switching frequency is less than a super-sonic frequency threshold and modifies operation to maintain the switching frequency at a super-sonic frequency level. The SBDCM controller detects a sub-sonic operating condition during ADCM operation and responsively inhibits operation of the ADCM mode controller to allow a SBDCM mode within a sub-sonic switching frequency range. The SBDCM operating mode allows for efficient connected standby operation. The SBDCM controller allows operation to return to other modes when the switching frequency increases above the sub-sonic level.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 15, 2015
    Assignee: INTERSIL AMERICAS LLC
    Inventors: M. Jason Houston, Steven P. Laur
  • Patent number: 9024610
    Abstract: A modulator with balanced slope compensation including a control network, a slope compensation network, an offset network and an adjust network. The control network receives a feedback signal indicative of an output voltage and provides a loop control signal. The slope compensation network develops a slope compensation signal. The offset network determines a DC offset of the slope compensation signal. The adjust network combines the DC offset, the slope compensation signal and the loop control signal to provide a balanced slope compensated control signal. The DC offset may be determined as a peak of the slope compensation signal. The slope compensation signal may be developed based on the output voltage and a pulse control signal, in which the pulse control signal is developed using the balanced slope compensated control signal.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: May 5, 2015
    Assignee: Intersil Americas LLC
    Inventors: Rhys S. A. Philbrick, Steven P. Laur, M. Jason Houston
  • Patent number: 8975885
    Abstract: A controller for a switch mode regulator with discontinuous conduction mode (DCM) correction which includes a correction network and a modulator. The correction network detects a low load condition indicative of regulation error during DCM and asserts an adjust value indicative thereof. The modulator receives the adjust value and adjusts operation accordingly to improve regulation during DCM. The correction network receives or determines a regulation metric, such as periods between successive pulses of a pulse control signal, or a current sense signal indicative of load current, and compares the regulation metric with one or more thresholds for determining the level of adjustment. Adjustment may be made using one or more methods, such as adjusting pulse on-time, adjusting pulse off-time, adjusting frequency of operation, etc.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: March 10, 2015
    Assignee: Intersil Americas Inc.
    Inventors: Rhys S. A. Philbrick, Steven P. Laur
  • Publication number: 20140368174
    Abstract: A controller for controlling operation of a switching regulator including a modulator, a discontinuous conduction mode (DCM) controller, an audible DCM (ADCM) controller, and a sub-sonic discontinuous conduction mode (SBDCM) controller. The modulator generally operates in a continuous conduction mode. The DCM controller modifies operation to DCM during low loads. The ADCM controller detects when the switching frequency is less than a super-sonic frequency threshold and modifies operation to maintain the switching frequency at a super-sonic frequency level. The SBDCM controller detects a sub-sonic operating condition during ADCM operation and responsively inhibits operation of the ADCM mode controller to allow a SBDCM mode within a sub-sonic switching frequency range. The SBDCM operating mode allows for efficient connected standby operation. The SBDCM controller allows operation to return to other modes when the switching frequency increases above the sub-sonic level.
    Type: Application
    Filed: June 28, 2013
    Publication date: December 18, 2014
    Inventors: M. Jason Houston, Steven P. Laur
  • Patent number: 8901910
    Abstract: A predictive current feedback system for a switched mode regulator including a sample and hold network for sampling voltage across a lower switch of the regulator and for providing a hold signal indicative thereof, and a predictive current feedback network which adds an offset adjustment to the hold signal based on a duration of a pulse width of a pulse control signal developed by the regulator. Sampling may be done while the lower switch is on for providing a hold value indicative of inductor current while the pulse control signal is low. The offset adjustment may be added to the hold signal in response to a transient event when the pulse signal is high. The offset may be incremental values after each of incremental time periods after a nominal time period, or may be a time-varying value. Adjustment may be made while the pulse signal is low as well.
    Type: Grant
    Filed: June 25, 2012
    Date of Patent: December 2, 2014
    Assignee: Intersil Americas LLC
    Inventors: Steven P. Laur, M. Jason Houston, Rhys S. A. Philbrick, Thomas A. Jochum
  • Patent number: 8860394
    Abstract: A dynamic voltage response network for a switching regulator with droop control providing a droop control signal includes a voltage identification setting network, a pass and hold system, and a reset network. The voltage identification setting network initiates a hold condition and adjusts an output voltage reference in response to a change in a voltage identification input. The pass and hold system passes the droop control signal during a pass condition and holds the droop control signal during the hold condition. The reset network resets the pass and hold system to the pass condition in response to a reset signal. The reset signal may be provided in response to a variety of conditions, such as load transients, proximity between the developed droop control signal and the held droop control signal, timeout after the output voltage reference is adjusted, among other reset conditions.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: October 14, 2014
    Assignee: Intersil Americas LLC
    Inventors: M. Jason Houston, Steven P. Laur, Rhys S. A. Philbrick
  • Patent number: 8786377
    Abstract: A variable frequency modulator including a compensation network, first and second pulse control networks and a linearity controller. The compensation network is configured to provide a compensation signal indicative of an output load condition. The first pulse control network is configured to initiate pulses on a pulse control signal and to adjust operating frequency based on changes of the compensation signal. The second pulse control network is configured to terminate the pulses on the pulse control signal based on a predetermined timing parameter. The linearity controller is configured to adjust timing of terminating the pulses based on a predetermined steady state operating frequency and an actual operating frequency to maintain modulator gain at a constant level.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: July 22, 2014
    Assignee: Intersil Americas LLC
    Inventors: M. Jason Houston, Steven P. Laur, Rhys S. A. Philbrick
  • Patent number: 8629662
    Abstract: A phase current sharing network that adjusts operation of a current mode multiphase switching regulator in which the phase current sharing network includes multiple synthetic ripple networks and a current share network. The regulator develops phase currents including ripple currents through corresponding phase inductors as controlled by corresponding pulse control signals. Each synthetic ripple networks develops a corresponding ripple voltage that simulates a corresponding phase ripple current and uses the ripple voltages to develop the pulse control signals. The current share network adjusts each ripple voltage by a combined adjustment value. The combined adjustment value is a combination of phase adjustment values in which each phase adjustment value is based on a difference between a corresponding one of ripple voltage and a reference voltage. Transconductance amplifiers may be used to convert the voltage differences to current adjust values applied to the ripple capacitors developing the ripple voltages.
    Type: Grant
    Filed: February 20, 2013
    Date of Patent: January 14, 2014
    Assignee: Intersil Americas LLC
    Inventors: Steven P. Laur, Rhys S. A. Philbrick
  • Publication number: 20140002047
    Abstract: A dynamic voltage response network for a switching regulator with droop control providing a droop control signal includes a voltage identification setting network, a pass and hold system, and a reset network. The voltage identification setting network initiates a hold condition and adjusts an output voltage reference in response to a change in a voltage identification input. The pass and hold system passes the droop control signal during a pass condition and holds the droop control signal during the hold condition. The reset network resets the pass and hold system to the pass condition in response to a reset signal. The reset signal may be provided in response to a variety of conditions, such as load transients, proximity between the developed droop control signal and the held droop control signal, timeout after the output voltage reference is adjusted, among other reset conditions.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 2, 2014
    Applicant: INTERSIL AMERICAS LLC
    Inventors: M. Jason Houston, Steven P. Laur, Rhys S.A. Philbrick
  • Publication number: 20130300392
    Abstract: A regulator system with dynamic droop including a regulator control network which is adapted to control regulation of an output voltage to a reference level, a DC droop network which provides a droop signal to modify the reference level based on output load according to a predetermined DC load line, and a dynamic droop network which adjusts the droop signal to delay recovery to the predetermined DC load line within an AC load line tolerance in response to a load transient. A transient reduction network may be included to reduce transient overshoot for load insertion or release depending upon duty cycle type. The dynamic droop network adjusts the droop signal to optimize utilization of an AC delay parameter while transitioning between an AC offset voltage allowance and the predetermined DC load line.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 14, 2013
    Applicant: INTERSIL AMERICAS LLC
    Inventors: Steven P. Laur, M. Jason Houston, Rhys S.A. Philbrick, Thomas A. Jochum
  • Publication number: 20130300388
    Abstract: A predictive current feedback system for a switched mode regulator including a sample and hold network for sampling voltage across a lower switch of the regulator and for providing a hold signal indicative thereof, and a predictive current feedback network which adds an offset adjustment to the hold signal based on a duration of a pulse width of a pulse control signal developed by the regulator. Sampling may be done while the lower switch is on for providing a hold value indicative of inductor current while the pulse control signal is low. The offset adjustment may be added to the hold signal in response to a transient event when the pulse signal is high. The offset may be incremental values after each of incremental time periods after a nominal time period, or may be a time-varying value. Adjustment may be made while the pulse signal is low as well.
    Type: Application
    Filed: June 25, 2012
    Publication date: November 14, 2013
    Applicant: INTERSIL AMERICAS LLC
    Inventors: Steven P. Laur, M. Jason Houston, Rhys S.A. Philbrick, Thomas A. Jochum
  • Publication number: 20130293212
    Abstract: A modulator with balanced slope compensation including a control network, a slope compensation network, an offset network and an adjust network. The control network receives a feedback signal indicative of an output voltage and provides a loop control signal. The slope compensation network develops a slope compensation signal. The offset network determines a DC offset of the slope compensation signal. The adjust network combines the DC offset, the slope compensation signal and the loop control signal to provide a balanced slope compensated control signal. The DC offset may be determined as a peak of the slope compensation signal. The slope compensation signal may be developed based on the output voltage and a pulse control signal, in which the pulse control signal is developed using the balanced slope compensated control signal.
    Type: Application
    Filed: June 28, 2012
    Publication date: November 7, 2013
    Applicant: INTERSIL AMERICAS LLC
    Inventors: Rhys S.A. Philbrick, Steven P. Laur, M. Jason Houston
  • Patent number: 8487593
    Abstract: A controller for a switched mode power supply converting an input voltage to a regulated output voltage according to one embodiment includes a control network and a detection network. The control network develops a pulse width control signal for regulating a level of the output voltage. The detection network detects a phase lag of the output voltage and adjusts operation of the control network based on the phase lag. The phase lag may be determined from any parameter incorporating phase shift, such as the output voltage or the compensation voltage. Various alternative schemes are disclosed for adjusting the control loop, including, but not limited to, adding slope compensation, adjusting window resistance or window current, adding adjustment current to adjust ripple voltage, adjusting ripple transconductance, and adjusting ripple capacitance. Digital and analog compensation adjustment schemes are disclosed.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: July 16, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Steven P. Laur, Rhys S. A. Philbrick
  • Publication number: 20130127557
    Abstract: A variable frequency modulator including a compensation network, first and second pulse control networks and a linearity controller. The compensation network is configured to provide a compensation signal indicative of an output load condition. The first pulse control network is configured to initiate pulses on a pulse control signal and to adjust operating frequency based on changes of the compensation signal. The second pulse control network is configured to terminate the pulses on the pulse control signal based on a predetermined timing parameter. The linearity controller is configured to adjust timing of terminating the pulses based on a predetermined steady state operating frequency and an actual operating frequency to maintain modulator gain at a constant level.
    Type: Application
    Filed: June 29, 2012
    Publication date: May 23, 2013
    Applicant: INTERSIL AMERICAS LLC
    Inventors: M. Jason Houston, Steven P. Laur, Rhys S.A. Philbrick