Patents by Inventor Steven R. Webb

Steven R. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220162624
    Abstract: As disclosed herein, optimal native genomic loci from maize plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: October 13, 2021
    Publication date: May 26, 2022
    Applicant: CORTEVA AGRISCIENCE LLC
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER
  • Patent number: 11198883
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: December 14, 2021
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Patent number: 11198882
    Abstract: As disclosed herein, optimal native genomic loci from maize plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: August 24, 2018
    Date of Patent: December 14, 2021
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper
  • Patent number: 11149287
    Abstract: As disclosed herein, optimal native genomic loci have been identified in dicot plants, such as soybean plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 19, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper
  • Patent number: 11098317
    Abstract: As disclosed herein, optimal native genomic loci have been identified in monocot plants, such as maize plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: January 31, 2019
    Date of Patent: August 24, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, Navin Elango
  • Patent number: 11098316
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: September 6, 2018
    Date of Patent: August 24, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Publication number: 20210230617
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 29, 2021
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER, W. Michael AINLEY
  • Patent number: 11008578
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: May 18, 2021
    Assignee: Corteva Agriscience LLC
    Inventors: W. Michael Ainley, Ryan C. Blue, Michael G. Murray, David Richard Corbin, Rebecca Ruth Miles, Steven R. Webb
  • Patent number: 10961540
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: November 27, 2019
    Date of Patent: March 30, 2021
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10844389
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Grant
    Filed: April 23, 2019
    Date of Patent: November 24, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Patent number: 10752913
    Abstract: The subject invention relates to a novel gene referred to herein as DSM-2. This gene was identified in Sterptomyces coelicolor A3. The DSM-2 protein is distantly related to PAT and BAR. The subject invention also provides plant-optimized genes encoding DSM-2 proteins, DSM-2 can be used as a transgenic trait to impart tolerance in plants and plant cells to the herbicides glufosinate and bialaphos. One preferred use of the subject genes are as selectable markers. The use of this gene as a selectable marker in a bacterial system can increase efficiency for plant transformations. Use of DSM-2 as the sole selection marker eliminates the need for an additional medicinal antibiotic marker (such as ampicillin resistance) during cloning. Various other uses are also possible according to the subject invention.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: August 25, 2020
    Assignee: Dow AgroSciences LLC
    Inventors: Justin M. Lira, Terry R. Wright, Sean M. Russell, Donald J. Merlo, Steven R. Webb, Nicole L. Arnold, Andrew E. Robinson, Kelley A. Smith
  • Patent number: 10640779
    Abstract: An Engineered Transgene Integration Platform (ETIP) is described that can be inserted randomly or at targeted locations in plant genomes to facilitate rapid selection and detection of a GOI that is perfectly targeted (both the 5? and 3? ends) at the ETIP genomic location. One element in the subject disclosure is the introduction of specific double stranded breaks within the ETIP. In some embodiments, an ETIP is described using zinc finger nuclease binding sites, but may utilize other targeting technologies such as meganucleases, CRISPRs, TALs, or leucine zippers. Also described are compositions of, and methods for producing, transgenic plants wherein the donor or payload DNA expresses one or more products of an exogenous nucleic acid sequence (e.g. protein or RNA) that has been stably-integrated into an ETIP in a plant cell. In embodiments, the ETIP facilitates testing of gene candidates and plant expression vectors from ideation through Development phases.
    Type: Grant
    Filed: September 6, 2013
    Date of Patent: May 5, 2020
    Assignee: Dow AgroSciences LLC
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Mike Ainley, Matthew J. Henry, John Mason, Sandeep Kumar, Stephen Novak
  • Publication number: 20200087671
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Application
    Filed: November 27, 2019
    Publication date: March 19, 2020
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Publication number: 20200071712
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Application
    Filed: November 5, 2019
    Publication date: March 5, 2020
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Patent number: 10577616
    Abstract: A method of gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a cell, to generate a break in the FAD2 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: March 3, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10526610
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: January 7, 2020
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 10501748
    Abstract: Disclosed herein are methods and compositions for parallel or sequential transgene stacking in plants to produce plants with selected phenotypes.
    Type: Grant
    Filed: April 2, 2014
    Date of Patent: December 10, 2019
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Dmitry Y. Guschin, Matthew Hayden, Daniel Isenegger, John Mason, Jeffrey C. Miller, Joseph F. Petolino, Yidong Ran, Tim Sawbridge, German Spangenberg, Steven R. Webb
  • Publication number: 20190316141
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Application
    Filed: April 23, 2019
    Publication date: October 17, 2019
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Patent number: 10415046
    Abstract: The present invention claims methods for the stable integration of exogenous DNA into a specific locus, E32, in the maize genome through the use of zinc finger nucleases. Maize plants and plant parts that were transformed by the methods of the invention are claimed. The invention is useful for creating desirable traits such as herbicide resistance, herbicide tolerance, insect resistance, insect tolerance, disease resistance, disease tolerance, stress tolerance, and stress resistance in maize The E32 locus represents a superior site for inserting foreign genes because native agronomic phenotypes are not disturbed.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: September 17, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: W. Michael Ainley, James W. Bing, David R. Corbin, Steven L. Evans, Joseph F. Petolino, Lakshmi Sastry-Dent, Steven A. Thompson, Steven R. Webb, Mary E. Welter, Ning Zhou
  • Patent number: 10344322
    Abstract: The present disclosure provides methods for detecting and identifying plant events that contain precision targeted genomic loci, and plants and plant cells comprising such targeted genomic loci. The method can be deployed as a high throughput process utilized for screening the intactness or disruption of a targeted genomic loci and optionally for detecting a donor DNA polynucleotide insertion at the targeted genomic loci. The methods are readily applicable for the identification of plant events produced via a targeting method which results from the use of a site specific nuclease.
    Type: Grant
    Filed: August 29, 2016
    Date of Patent: July 9, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Matthew A. Simpson, Zehui Cao, Wei Chen, Ning Zhou, Steven R. Webb