Patents by Inventor Steven R. Webb

Steven R. Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190194674
    Abstract: As disclosed herein, optimal native genomic loci have been identified in monocot plants, such as maize plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: January 31, 2019
    Publication date: June 27, 2019
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER, Navin ELANGO
  • Patent number: 10287595
    Abstract: Methods and compositions for gene disruption, gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a soybean cell, to generate a break in the FAD2 gene and then optionally integrating into the break a nucleic acid molecule of interest is disclosed.
    Type: Grant
    Filed: October 13, 2016
    Date of Patent: May 14, 2019
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: W. Michael Ainley, Steven R. Webb, Jayakumar P. Samuel, Dmitry Y. Guschin, Jeffrey C. Miller, Lei Zhang
  • Publication number: 20190136265
    Abstract: As disclosed herein, optimal native genomic loci have been identified in dicot plants, such as soybean plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 9, 2019
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER
  • Patent number: 10273493
    Abstract: As disclosed herein, optimal native genomic loci have been identified in monocot plants, such as maize plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: April 30, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, Navin Elango
  • Publication number: 20190085344
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Application
    Filed: December 4, 2018
    Publication date: March 21, 2019
    Inventors: William Michael Ainley, Ryan C. Blue, Michael G. Murray, David Richard Corbin, Rebecca Ruth Miles, Steven R. Webb
  • Patent number: 10233465
    Abstract: As disclosed herein, optimal native genomic loci have been identified in dicot plants, such as soybean plants, that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 19, 2019
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper
  • Publication number: 20190024100
    Abstract: As disclosed herein, optimal native genomic loci from maize plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: August 24, 2018
    Publication date: January 24, 2019
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper
  • Patent number: 10174331
    Abstract: Disclosed herein are methods and compositions for homology-independent targeted insertion of donor molecules into the genome of a cell.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: January 8, 2019
    Assignees: Sangamo Therapeutics, Inc., Dow AgroSciences LLC
    Inventors: Gregory J. Cost, Fyodor Urnov, W. Michael Ainley, Joseph F. Petolino, Jayakumar Pon Samuel, Steven R. Webb, Lakshmi Sastry-Dent
  • Publication number: 20180371478
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: September 6, 2018
    Publication date: December 27, 2018
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Patent number: 10160975
    Abstract: A method for producing a transgenic plant includes providing a nucleic acid molecule comprising at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell, and at least two zinc finger nuclease recognition sites, wherein the at least two regions of nucleic acid sequence that lack sequence homology with genomic DNA of the plant cell flank the at least two zinc finger nuclease recognition sites. A plant cell or tissue having the nucleic acid molecule stably integrated into the genome of the plant cell is transformed. A plant is regenerated from the plant cell. Transgenic plants are produced by the method. Seeds are produced by the transgenic plants.
    Type: Grant
    Filed: August 12, 2014
    Date of Patent: December 25, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: W. Michael Ainley, Ryan C. Blue, Michael G. Murray, David Richard Corbin, Rebecca Ruth Miles, Steven R. Webb
  • Patent number: 10106804
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: October 23, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Patent number: 10093940
    Abstract: As disclosed herein, optimal native genomic loci from maize plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: October 9, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper
  • Publication number: 20180223297
    Abstract: A method of gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a cell, to generate a break in the FAD2 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Application
    Filed: April 2, 2018
    Publication date: August 9, 2018
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Publication number: 20180163217
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, W. Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Publication number: 20180142250
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Application
    Filed: January 11, 2018
    Publication date: May 24, 2018
    Inventors: Lakshmi SASTRY-DENT, Zehui CAO, Shreedharan SRIRAM, Steven R. WEBB, Debra L. CAMPER, W. Michael AINLEY
  • Patent number: 9963711
    Abstract: A method of gene editing or gene stacking within a FAD2 loci by cleaving, in a site directed manner, a location in a FAD2 gene in a cell, to generate a break in the FAD2 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: May 8, 2018
    Assignees: Sangamo Therapeutics, Inc., Dow AgroSciences LLC
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, William Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 9914930
    Abstract: A method of gene editing or gene stacking within a FAD3 loci by cleaving, in a site directed manner, a location in a FAD3 gene in a cell, to generate a break in the FAD3 gene and then ligating into the break a nucleic acid molecule associated with one or more traits of interest is disclosed.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: March 13, 2018
    Assignees: Dow AgroSciences LLC, Sangamo Therapeutics, Inc.
    Inventors: Noel Cogan, John Forster, Matthew Hayden, Tim Sawbridge, German Spangenberg, Steven R. Webb, Manju Gupta, William Michael Ainley, Matthew J. Henry, Jeffrey C. Miller, Dmitry Y. Guschin
  • Patent number: 9909131
    Abstract: As disclosed herein, optimal native genomic loci of soybean plants have been identified that represent best sites for targeted insertion of exogenous sequences.
    Type: Grant
    Filed: November 3, 2014
    Date of Patent: March 6, 2018
    Assignee: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Zehui Cao, Shreedharan Sriram, Steven R. Webb, Debra L. Camper, W. Michael Ainley
  • Publication number: 20170283865
    Abstract: The present disclosure provides methods for detecting and identifying plant events that contain precision targeted genomic loci, and plants and plant cells comprising such targeted genomic loci. The method can be deployed as a high throughput process utilized for screening the intactness or disruption of a targeted genomic loci and optionally for detecting a donor DNA polynucleotide insertion at the targeted genomic loci. The methods are readily applicable for the identification of plant events produced via a targeting method which results from the use of a site specific nuclease.
    Type: Application
    Filed: August 29, 2016
    Publication date: October 5, 2017
    Applicant: Dow AgroSciences LLC
    Inventors: Lakshmi Sastry-Dent, Matthew A. Simpson, Zehui Cao, Wei Chen, Ning Zhou, Steven R. Webb
  • Patent number: 9719108
    Abstract: Provided are methods for introducing a sequence-specific nuclease into a plant cell comprising a cell wall. Methods are provided for genetically or otherwise modifying plants and for treating or preventing disease in plant cells comprising a cell wall.
    Type: Grant
    Filed: September 22, 2015
    Date of Patent: August 1, 2017
    Assignee: Dow AgroSciences LLC
    Inventors: Jayakumar Pon Samuel, Joseph F. Petolino, Narasimha Chary Samboju, Steven R. Webb, Kerrm Y. Yau