Patents by Inventor Steven T. Mayer

Steven T. Mayer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020195352
    Abstract: An apparatus for electrochemical treatment of a substrate, in particular for electroplating an integrated circuit wafer. An apparatus preferably includes dynamically operable concentric anodes and dielectric shields in an electrochemical bath. Preferably, the bath height of an electrochemical bath, the substrate height, and the shape and positions of an insert shield and a diffuser shield are dynamically variable during electrochemical treatment operations. Step include varying anode current, bath height and substrate height, shield shape, and shield position.
    Type: Application
    Filed: April 4, 2002
    Publication date: December 26, 2002
    Inventors: Steven T. Mayer, Timothy Patrick Cleary, Michael John Janicki, Edmund B. Minshall, Thomas A. Ponnuswamy
  • Publication number: 20020074238
    Abstract: The present invention pertains to apparatus and methods for planarization of metal surfaces having both recessed and raised features, over a large range of feature sizes. The invention accomplishes this by increasing the fluid agitation in raised regions with respect to recessed regions. That is, the agitation of the electropolishing bath fluid is agitated or exchanged as a function of elevation on the metal film profile. The higher the elevation, the greater the movement or exchange rate of bath fluid. In preferred methods of the invention, this agitation is achieved through the use of a microporous electropolishing pad that moves over (either near or in contact with) the surface of the wafer during the electropolishing process. Thus, methods of the invention are electropolishing methods, which in some cases include mechanical polishing elements.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 20, 2002
    Inventors: Steven T. Mayer, Robert J. Contolini, Eliot K. Broadbent, John S. Drewery
  • Patent number: 6402923
    Abstract: An electrochemical reactor is used to electrofill damascene architecture for integrated circuits. A shield is used to screen the applied field during electroplating operations to compensate for potential drop along the radius of a wafer. The shield establishes an inverse potential drop in the electrolytic fluid to overcome the resistance of a thin film seed layer of copper on the wafer.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: June 11, 2002
    Inventors: Steven T. Mayer, Richard Hill, Alain Harrus, Evan Patton, Robert Contolini, Steve Taatjes, Jon Reid
  • Patent number: 6379842
    Abstract: Positive electrodes including a lithium nickel cobalt metal oxide are disclosed. The lithium nickel cobalt metal oxides have the general formula LixNiyCOzMnO2, where M is selected from the group consisting of aluminum, titanium, tungsten, chromium, molybdenum, magnesium, tantalum, silicon, and combinations thereof, x is between about 0 and about 1 and can be varied within this range by electrochemical insertion and extraction, the sum of y+z+n is about 1, n ranges between above 0 to about 0.25, y and z are both greater than 0, and the ratio z/y ranges from above 0 to about 1/3. Also disclosed are composite positive electrodes including the above-described lithium nickel cobalt metal oxides together with a lithium manganese metal oxide of the formula LixMn2−rM1rO4, where r is a value between 0 and 1 and M1 is chromium, titanium, tungsten, nickel, cobalt, iron, tin, zinc, zirconium, silicon, or a combination thereof.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: April 30, 2002
    Assignee: PolyStor Corporation
    Inventor: Steven T. Mayer
  • Patent number: 6333275
    Abstract: A chemical etching system provides a mixture of sulfuric acid and hydrogen peroxide and serves as the etchant for removing residual copper from an edge bevel region of a semiconductor wafer. The etching system includes a dilution module where concentrated sulfuric acid and concentrated hydrogen peroxide are diluted to the appropriate concentrations and then stored. To reduce the likelihood that oxygen bubbles (from hydrogen peroxide decomposition) will appear in the etchant solution, stored sulfuric acid and hydrogen peroxide are mixed immediately prior to use. In this manner, the dissolved oxygen concentration in the hydrogen peroxide decreases well below the saturation level.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: December 25, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John B. Alexy, Jinbin Feng
  • Patent number: 6332990
    Abstract: Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: December 25, 2001
    Assignee: The Regents of the University of California
    Inventors: Steven T. Mayer, Richard W. Pekala, James L. Kaschmitter
  • Patent number: 6315883
    Abstract: A disclosed electroplanarization process involves “masking” certain regions of a wafer surface during electropolishing. The regions chosen for masking are features of relatively low aspect ratio (i.e., features that are wider than they are deep). The masking is accomplished with a material of relatively low ionic conductivity, which effectively slows or blocks transport of the metal ions produced during electropolishing. Examples of masking materials include concentrated phosphoric acid and certain polymers.
    Type: Grant
    Filed: October 5, 1999
    Date of Patent: November 13, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Robert J. Contolini
  • Patent number: 6309981
    Abstract: Chemical etching methods and associated modules for performing the removal of metal from the edge bevel region of a semiconductor wafer are described. The methods and systems apply liquid etchant in a precise manner at the edge bevel region of the wafer under viscous flow conditions, so that the etchant is applied on to the front edge area and flows over the side edge and onto the back edge in a viscous manner. The etchant thus does not flow or splatter onto the active circuit region of the wafer.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: October 30, 2001
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Carl Russo, Evan Patton
  • Publication number: 20010015321
    Abstract: Electroplating methods using an electroplating bath containing metal ions and a suppressor additive, an accelerator additive, and a leveler additive, together with controlling the current density applied to a substrate, avoid defects in plated films on substrates having features with a range of aspect ratios, while providing good filling and thickness distribution. The methods include, in succession, applying DC cathodic current densities optimized to form a conformal thin film on a seed layer, to provide bottom-up filling, preferentially on features having the largest aspect ratios, and to provide conformal plating of all features and adjacent field regions. Including a leveling agent in the electroplating bath produces films with better quality after subsequent processing.
    Type: Application
    Filed: February 28, 2001
    Publication date: August 23, 2001
    Inventors: Jonathan D. Reid, David Smith, Steven T. Mayer, Jon Henri, Sesha Varadarajan
  • Patent number: 6201924
    Abstract: A disk-assisted system for editing video tapes. Source material from video tapes is logged onto random access storage such as a hard disk drive using of a Macintosh-based computer system. At any one time, only a small portion of the tape material is stored as video frames on the computer disk. By software control, material is cached back and forth between the computer disk and the video tape. Thus editing is accomplished and an edit decision list constructed for compilation of the final video production. This provides the advantage of fast access time for editing of the material which is on the disk while allowing actual physical editing at the end of the project of the actual video tape material. The processes of logging the material onto the disk and editing the final tape are performed automatically.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: March 13, 2001
    Assignee: Adobe Systems Incorporated
    Inventors: Stephen E. Crane, LeeAnn Heringer, Michael Shinsky, Gerald A. Raitzer, Michael A. Ogrinc, Steven T. Mayer
  • Patent number: 6007947
    Abstract: Positive electrodes including a lithium nickel cobalt metal oxide are disclosed. The lithium nickel cobalt metal oxides have the general formula Li.sub.x Ni.sub.y Co.sub.z M.sub.n O.sub.2, where M is selected from the group consisting of aluminum, titanium, tungsten, chromium, molybdenum, magnesium, tantalum, silicon, and combinations thereof, x is between about 0 and about 1 and can be varied within this range by electrochemical insertion and extraction, the sum of y+z+n is about 1, n ranges between above 0 to about 0.25, y and z are both greater than 0, and the ratio z/y ranges from above 0 to about 1/3. Also disclosed are composite positive electrodes including the above-described lithium nickel cobalt metal oxides together with a lithium manganese metal oxide of the formula Li.sub.x Mn.sub.2-r M1.sub.r O.sub.4, where r is a value between 0 and 1 and M1 is chromium, titanium, tungsten, nickel, cobalt, iron, tin, zinc, zirconium, silicon, or a combination thereof.
    Type: Grant
    Filed: June 17, 1998
    Date of Patent: December 28, 1999
    Assignee: PolyStor Corporation
    Inventor: Steven T. Mayer
  • Patent number: 5932185
    Abstract: A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.
    Type: Grant
    Filed: August 23, 1993
    Date of Patent: August 3, 1999
    Assignee: The Regents of the University of California
    Inventors: Richard W. Pekala, Steven T. Mayer, James L. Kaschmitter, Robert L. Morrison
  • Patent number: 5908896
    Abstract: Organic aerogel microspheres which can be used in capacitors, batteries, thermal insulation, adsorption/filtration media, and chromatographic packings, having diameters ranging from about 1 micron to about 3 mm. The microspheres can be pyrolyzed to form carbon aerogel microspheres. This method involves stirring the aqueous organic phase in mineral oil at elevated temperature until the dispersed organic phase polymerizes and forms nonsticky gel spheres. The size of the microspheres depends on the collision rate of the liquid droplets and the reaction rate of the monomers from which the aqueous solution is formed. The collision rate is governed by the volume ratio of the aqueous solution to the mineral oil and the shear rate, while the reaction rate is governed by the chemical formulation and the curing temperature.
    Type: Grant
    Filed: January 16, 1996
    Date of Patent: June 1, 1999
    Assignee: The Regents of the University of California
    Inventors: Steven T. Mayer, Fung-Ming Kong, Richard W. Pekala, James L. Kaschmitter
  • Patent number: 5898564
    Abstract: Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: April 27, 1999
    Assignee: Regents of the University of California
    Inventors: Steven T. Mayer, Richard W. Pekala, James L. Kaschmitter
  • Patent number: 5789338
    Abstract: A high energy density capacitor incorporating a variety of carbon foam electrodes is described. The foams, derived from the pyrolysis of resorcinol-formaldehyde and related polymers, are high density (0.1 g/cc-1.0 g/cc) electrically conductive and have high surface areas (400 m.sup.2 /g-1000 m.sup.2 /g). Capacitances on the order of several tens of farad per gram of electrode are achieved.
    Type: Grant
    Filed: March 20, 1996
    Date of Patent: August 4, 1998
    Assignee: Regents of the University of California
    Inventors: James L. Kaschmitter, Steven T. Mayer, Richard W. Pekala
  • Patent number: 5783333
    Abstract: Positive electrodes including a lithium nickel cobalt metal oxide are disclosed. The lithium nickel cobalt metal oxides have the general formula Li.sub.x Ni.sub.y CO.sub.z M.sub.n O.sub.2, where M is selected from the group consisting of aluminum, titanium, tungsten, chromium, molybdenum, magnesium, tantalum, silicon, and combinations thereof, x is between about 0 and about 1 and can be varied within this range by electrochemical insertion and extraction, the sum of y+z+n is about 1, n ranges between above 0 to about 0.25, y and z are both greater than 0, and the ratio z/y ranges from above 0 to about 1/3. Also disclosed are composite positive electrodes including the abovedescribed lithium nickel cobalt metal oxides together with a lithium manganese metal oxide of the formula Li.sub.x Mn.sub.2-r M1.sub.r O.sub.4, where r is a value between 0 and 1 and M1 is chromium, titanium, tungsten, nickel, cobalt, iron, tin, zinc, zirconium, silicon, or a combination thereof.
    Type: Grant
    Filed: November 27, 1996
    Date of Patent: July 21, 1998
    Assignee: PolyStor Corporation
    Inventor: Steven T. Mayer
  • Patent number: 5741606
    Abstract: A cell pressure control system is disclosed which has a two stage control mechanism. In the first stage, increased cell pressure causes a conductive deflection member to bend to a position where it opens an electrical contact and places the cell in open circuit. This prevents current from flowing through the cell and thereby possibly slowing or preventing further increases in cell pressure. The electrical contact relies only upon the pressure of two members (one of which is the deflection member) pushing against one another. If the cell's internal pressure continues to increase even after the pressure contact is broken, the second stage of the pressure control mechanism is activated. Specifically, a pressure rupturable region in the above-mentioned deflection member ruptures to relieve the cell's internal pressure. The pressure rupturable region is a circularity scored region on the conductive deflection member.
    Type: Grant
    Filed: July 31, 1995
    Date of Patent: April 21, 1998
    Assignee: Polystor Corporation
    Inventors: Steven T. Mayer, John C. Whitehead
  • Patent number: 5636437
    Abstract: Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.
    Type: Grant
    Filed: May 12, 1995
    Date of Patent: June 10, 1997
    Assignee: Regents of the University of California
    Inventors: James L. Kaschmitter, Tri D. Tran, John H. Feikert, Steven T. Mayer
  • Patent number: 5626977
    Abstract: Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
    Type: Grant
    Filed: February 21, 1995
    Date of Patent: May 6, 1997
    Assignee: Regents of the University of California
    Inventors: Steven T. Mayer, Richard W. Pekala, James L. Kaschmitter
  • Patent number: 5609972
    Abstract: A cell pressure control system is disclosed which includes a conductive frangible tab which tears in response to a defined pressure. The frangible tab is affixed at one position to a stationary member and at another position to a deflection member which deflects in response to increasing internal cell pressure. When the cell pressure increases to a dangerous level, the deflection member exerts sufficient pressure on the frangible tab to cause it to break. When the tab breaks, the cell goes to open circuit, thus reducing the danger of continued pressure build up. If the cell's internal pressure continues to increase even after the pressure contact is opened, a second stage of the pressure control mechanism may be activated. Specifically, a pressure rupturable region in the above-mentioned deflection member will rupture and release the cell's internal pressure.
    Type: Grant
    Filed: March 4, 1996
    Date of Patent: March 11, 1997
    Assignee: PolyStor Corporation
    Inventors: James L. Kaschmitter, Frank L. Martucci, Steven T. Mayer, Jung H. Souh, Sean Thompson