Patents by Inventor Stuart S. Shih

Stuart S. Shih has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10208260
    Abstract: Systems and methods are provided for catalytically dewaxing a diesel boiling range feed. In some aspects, catalytic dewaxing can be performed at low hydrogen treat gas rates and/or low hydrogen purity conditions. In other aspects, the systems and methods can allow for distillate dewaxing while reducing or minimizing the amount of equipment required.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: February 19, 2019
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart S. Shih, Timothy L. Hilbert, Anastasios I. Skoulidas, Bryan A. Patel, Michael R. Chuba, Sean C. Smyth, Mohan Kalyanaraman
  • Patent number: 10053639
    Abstract: Methods are provided for dewaxing a distillate fuel boiling range feed to improve one or more cold flow properties of the distillate fuel feed, such as cloud point, where the distillate fuel feed is fractionated to produce both a jet fuel product and an arctic diesel fuel product. The decrease of cloud point is achieved by using a feedstock having a concentration of nitrogen of less than about 50 wppm and a concentration of sulfur of less than about 15 wppm. Further, the dewaxing catalyst may have a reduced content of hydrogenation metals, such as a content of Pt or Pd of from about 0.05 wt % to about 0.35 wt %. A distillate fuel feed can be dewaxed to achieve a desired cloud point differential using a reduced metals content dewaxing catalyst under the same or similar conditions to those required for a dewaxing catalyst with higher metals content.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: August 21, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Stuart S. Shih, Xiaochun Xu, William J. Novak, Carlos N. Lopez, Timothy Lee Hilbert, Stephen John McCarthy
  • Patent number: 10017705
    Abstract: This invention relates to a process involving hydrocracking and dewaxing of a feedstream in which a converted fraction can correspond to a majority of the product from the reaction system, while an unconverted fraction can exhibit improved properties. In this hydrocracking process, it can be advantageous for the yield of unconverted fraction for gasoline fuel application to be controlled to maintain desirable cold flow properties for the unconverted fraction. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Grant
    Filed: October 21, 2015
    Date of Patent: July 10, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Richard Charles Dougherty, William J. Novak, Stuart S. Shih, Stephen John McCarthy, Michel Daage
  • Patent number: 9902913
    Abstract: Methods are provided for producing Group II/III lubricant base oil products where at least a portion of the feedstock for forming the lubricant base oil product is a solvent extract fraction from a Group I lubricant production facility. This can increase the overall volume of feedstock available for production of Group II/III lubricant base oils by using a lower value stream (Group I solvent extract) as a portion of the feedstock. The solvent extract fraction can be added to a full range lubricant feedstock or to a portion of a lubricant feedstock, such as adding an extract fraction to a higher viscosity portion (such as a heavy neutral portion) of a feedstock for lubricant production, while a lower viscosity portion (such as a light neutral portion) is processed without addition of an extract fraction.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: February 27, 2018
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Nicole D. Vaughn, Teck-Mui Hoo, Michael B. Carroll, Stuart S. Shih, Eric D. Joseck, William J. Novak
  • Publication number: 20180002615
    Abstract: Systems and methods are provided for catalytically dewaxing a diesel boiling range feed. In some aspects, catalytic dewaxing can be performed at low hydrogen treat gas rates and/or low hydrogen purity conditions. In other aspects, the systems and methods can allow for distillate dewaxing while reducing or minimizing the amount of equipment required.
    Type: Application
    Filed: May 30, 2017
    Publication date: January 4, 2018
    Inventors: Stuart S. SHIH, Timothy L. HILBERT, Anastasios I. SKOULIDAS, Bryan A. PATEL, Michael R. CHUBA, Sean C. SMYTH, Mohan KALYANARAMAN
  • Patent number: 9719034
    Abstract: Methods are provided for processing a gas oil boiling range feedstock, such as a vacuum gas oil, in a single reaction stage and/or without performing intermediate separations. The methods are suitable for forming lubricants and distillate fuels while reducing or minimizing the production of lower boiling products such as naphtha and light ends. The methods can provide desirable yields of distillate fuels and lubricant base oils without requiring separate catalyst beds or stages for dewaxing and hydrocracking. The methods are based in part on use of a dewaxing catalyst that is tolerant of sour processing environments while still providing desirable levels of activity for both feed conversion and feed isomerization.
    Type: Grant
    Filed: November 18, 2014
    Date of Patent: August 1, 2017
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Gary P. Schleicher, Michael B. Carroll, Timothy L. Hilbert, Stephen J. McCarthy, William J. Novak
  • Patent number: 9487714
    Abstract: This invention relates to a process involving hydrocracking of a feedstream in which a converted fraction can exhibit relatively high distillate product yields and maintained or improved distillate fuel properties, while an unconverted fraction can exhibit improved properties particularly useful in the lubricant area. In this hydrocracking process, it can be advantageous for the yield of converted/unconverted product for gasoline fuel application to be reduced or minimized, relative to converted distillate fuel and unconverted lubricant. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 8, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Robert Allen Bradway, Stuart S. Shih, Timothy Lee Hilbert, Michel Daage
  • Publication number: 20160068774
    Abstract: Distillate feeds are hydroprocessed to produce a product having a low content of polyaromatic hydrocarbons (PAHs). The hydroprocessing includes dewaxing and aromatic saturation of the feed. The temperature of the aromatic saturation process can be controlled to make a distillate product having a desired aromatic content, such as less the 0.02 wt % of polyaromatic hydrocarbons having three or more aromatic rings.
    Type: Application
    Filed: November 18, 2015
    Publication date: March 10, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventor: Stuart S. Shih
  • Publication number: 20160046881
    Abstract: A process for desulfurizing a delayed coker naphtha in a catalytic naphtha desulfurization process in which the feed comprising the delayed coker naphtha is passed over a silicon trap comprising a high surface area inert alumina of low metals content prior to being hydrodesulfurized in an olefin-retentive, catalytic naphtha hydrodesulfurization process. Unpromoted (no intentional metals content), inert alumina is preferred for the silicon trap since it will not affect the olefin-retentive qualities of the hydrodesulfurization catalyst and for maximal silicon capture, a high surface area alumina is employed.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 18, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, William J. Novak
  • Publication number: 20160040083
    Abstract: This invention relates to a process involving hydrocracking and dewaxing of a feedstream in which a converted fraction can correspond to a majority of the product from the reaction system, while an unconverted fraction can exhibit improved properties. In this hydrocracking process, it can be advantageous for the yield of unconverted fraction for gasoline fuel application to be controlled to maintain desirable cold flow properties for the unconverted fraction. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Application
    Filed: October 21, 2015
    Publication date: February 11, 2016
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Richard Charles Dougherty, William J. Novak, Stuart S. Shih, Stephen John McCarthy, Michel Daage
  • Patent number: 9228137
    Abstract: Distillate feeds are hydroprocessed to produce a product having a low content of polyaromatic hydrocarbons (PAHs). The hydroprocessing includes dewaxing and aromatic saturation of the feed. The temperature of the aromatic saturation process can be controlled to make a distillate product having a desired aromatic content, such as less the 0.02 wt % of polyaromatic hydrocarbons having three or more aromatic rings.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: January 5, 2016
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Stuart S. Shih
  • Patent number: 9200218
    Abstract: This invention relates to a process involving hydrocracking and dewaxing of a feedstream in which a converted fraction can correspond to a majority of the product from the reaction system, while an unconverted fraction can exhibit improved properties. In this hydrocracking process, it can be advantageous for the yield of unconverted fraction for gasoline fuel application to be controlled to maintain desirable cold flow properties for the unconverted fraction. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: December 1, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Richard Dougherty, William J. Novak, Stuart S. Shih, Stephen J. McCarthy, Michel Daage
  • Patent number: 9157036
    Abstract: A system and method for producing fuels and lubricant basestocks from gas oil boiling range feeds is provided. Desulfurization and conversion stages are used to form fuel and lubricant products. The product from a desulfurization stage can be fractionated, and a portion of the fractionated bottoms can be used as an input feed for a conversion or hydrocracking stage. The configuration can advantageously allow for reduced amounts of catalyst in the conversion stage.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: October 13, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventor: Stuart S. Shih
  • Publication number: 20150275106
    Abstract: Methods are provided for producing Group II/III lubricant base oil products where at least a portion of the feedstock for forming the lubricant base oil product is a solvent extract fraction from a Group I lubricant production facility. This can increase the overall volume of feedstock available for production of Group II/III lubricant base oils by using a lower value stream (Group I solvent extract) as a portion of the feedstock. The solvent extract fraction can be added to a full range lubricant feedstock or to a portion of a lubricant feedstock, such as adding an extract fraction to a higher viscosity portion (such as a heavy neutral portion) of a feedstock for lubricant production, while a lower viscosity portion (such as a light neutral portion) is processed without addition of an extract fraction.
    Type: Application
    Filed: February 24, 2015
    Publication date: October 1, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Nicole D. Vaughn, Teck-Mui Hoo, Michael B. Carroll, Stuart S. Shih, Eric D. Joseck, William J. Novak
  • Publication number: 20150175911
    Abstract: Methods are provided for processing a gas oil boiling range feedstock, such as a vacuum gas oil, in a single reaction stage and/or without performing intermediate separations. The methods are suitable for forming lubricants and distillate fuels while reducing or minimizing the production of lower boiling products such as naphtha and light ends. The methods can provide desirable yields of distillate fuels and lubricant base oils without requiring separate catalyst beds or stages for dewaxing and hydrocracking. The methods are based in part on use of a dewaxing catalyst that is tolerant of sour processing environments while still providing desirable levels of activity for both feed conversion and feed isomerization.
    Type: Application
    Filed: November 18, 2014
    Publication date: June 25, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Gary P. Schleicher, Michael B. Carroll, Timothy L. Hilbert, Stephen J. McCarthy, William J. Novak
  • Patent number: 9028673
    Abstract: Systems and methods are provided for producing at least one low sulfur distillate fuel product with improved low temperature properties. A potential distillate fuel feed is initially hydrotreated to reduce sulfur and nitrogen levels in the feed to desired amounts. The hydrotreated effluent is then fractionated to form several fractions, including a light diesel/distillate fraction and a heavy diesel fraction. The heavy diesel fraction is then dewaxed to improve the cold flow properties of the heavy diesel fraction. The dewaxed heavy diesel fraction can be combined with the light diesel fraction, or the dewaxed heavy diesel fraction can be fractionated as well. Optionally, the heavy diesel fraction is dewaxed under conditions effective for producing a dewaxed fraction with a cloud point that is less than or equal to the cloud point of the light diesel/distillate fraction.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: May 12, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Berne K. Stober
  • Publication number: 20150122701
    Abstract: Methods are provided for dewaxing a distillate fuel boiling range feed to improve one or more cold flow properties of the distillate fuel feed, such as cloud point, where the distillate fuel feed is fractionated to produce both a jet fuel product and an arctic diesel fuel product. The decrease of cloud point is achieved by using a feedstock having a concentration of nitrogen of less than about 50 wppm and a concentration of sulfur of less than about 15 wppm. Further, the dewaxing catalyst may have a reduced content of hydrogenation metals, such as a content of Pt or Pd of from about 0.05 wt % to about 0.35 wt %. A distillate fuel feed can be dewaxed to achieve a desired cloud point differential using a reduced metals content dewaxing catalyst under the same or similar conditions to those required for a dewaxing catalyst with higher metals content.
    Type: Application
    Filed: October 6, 2014
    Publication date: May 7, 2015
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Stuart S. Shih, Xiaochun Xu, William J. Novak, Carlos N. Lopez, Timothy Lee Hilbert, Stephen John McCarthy
  • Patent number: 8852425
    Abstract: A divided wall column allows for fractionation of multiple streams while maintaining separate product qualities. Effluents from multiple stages of a reaction system can be processed in a single divided wall column. The divided wall column can produce multiple cuts from each separated area, as well as at least one output from a common area.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: October 7, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Benjamin S. Umansky, Berne K. Stober, Carlos N. Lopez, Stuart S. Shih, Timothy L. Hilbert, Andre T. Sims, William J. Tracy, III, Akira Murata, Paul W. Kamienski
  • Publication number: 20130341243
    Abstract: This invention relates to a process involving hydrocracking of a feedstream in which a converted fraction can exhibit relatively high distillate product yields and maintained or improved distillate fuel properties, while an unconverted fraction can exhibit improved properties particularly useful in the lubricant area. In this hydrocracking process, it can be advantageous for the yield of converted/unconverted product for gasoline fuel application to be reduced or minimized, relative to converted distillate fuel and unconverted lubricant. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Application
    Filed: August 27, 2013
    Publication date: December 26, 2013
    Applicant: ExxonMobil Research and Engineering
    Inventors: William J. Novak, Robert Allen Bradway, Stuart S. Shih, Timothy Lee Hilbert, Michel Daage
  • Patent number: 8557106
    Abstract: This invention relates to a process involving hydrocracking of a feedstream in which a converted fraction can exhibit relatively high distillate product yields and maintained or improved distillate fuel properties, while an unconverted fraction can exhibit improved properties particularly useful in the lubricant area. In this hydrocracking process, it can be advantageous for the yield of converted/unconverted product for gasoline fuel application to be reduced or minimized, relative to converted distillate fuel and unconverted lubricant. Catalysts and conditions can be chosen to assist in attaining, or to optimize, desirable product yields and/or properties.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: October 15, 2013
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: William J. Novak, Robert A. Bradway, Stuart S. Shih, Timothy L. Hilbert, Michel Daage