Patents by Inventor Subhash M. Joshi
Subhash M. Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12266571Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: September 29, 2023Date of Patent: April 1, 2025Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
-
Patent number: 12255247Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: GrantFiled: January 18, 2024Date of Patent: March 18, 2025Assignee: Intel CorporationInventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
-
Publication number: 20240162332Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: ApplicationFiled: January 18, 2024Publication date: May 16, 2024Inventors: Subhash M. JOSHI, Jeffrey S. LEIB, Michael L. HATTENDORF
-
Patent number: 11948997Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: GrantFiled: April 17, 2023Date of Patent: April 2, 2024Assignee: Intel CorporationInventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
-
Patent number: 11887891Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: January 17, 2023Date of Patent: January 30, 2024Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
-
Publication number: 20240030067Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: ApplicationFiled: September 29, 2023Publication date: January 25, 2024Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
-
Publication number: 20230261089Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: ApplicationFiled: April 17, 2023Publication date: August 17, 2023Inventors: Subhash M. JOSHI, Jeffrey S. LEIB, Michael L. HATTENDORF
-
Patent number: 11664439Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: GrantFiled: April 28, 2021Date of Patent: May 30, 2023Assignee: Intel CorporationInventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
-
Publication number: 20230154793Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: ApplicationFiled: January 17, 2023Publication date: May 18, 2023Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
-
Patent number: 11600524Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: January 12, 2021Date of Patent: March 7, 2023Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
-
Publication number: 20230028568Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.Type: ApplicationFiled: September 30, 2022Publication date: January 26, 2023Applicant: Intel CorporationInventors: Sameer S. Pradhan, Subhash M. Joshi, Jin-Sung Chun
-
Publication number: 20210249524Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: ApplicationFiled: April 28, 2021Publication date: August 12, 2021Inventors: Subhash M. JOSHI, Jeffrey S. LEIB, Michael L. HATTENDORF
-
Patent number: 11088261Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: GrantFiled: July 11, 2019Date of Patent: August 10, 2021Assignee: Intel CorporationInventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
-
Publication number: 20210134673Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: ApplicationFiled: January 12, 2021Publication date: May 6, 2021Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
-
Patent number: 10957782Abstract: Embodiments of the disclosure are in the field of advanced integrated circuit structure fabrication and, in particular, 10 nanometer node and smaller integrated circuit structure fabrication and the resulting structures. In an example, an integrated circuit structure includes a fin. A gate dielectric layer is over the top of the fin and laterally adjacent the sidewalls of the fin. A gate electrode is over the gate dielectric layer over the top of the fin and laterally adjacent the sidewalls of the fin. First and second semiconductor source or drain regions are adjacent the first and second sides of the gate electrode, respectively. First and second trench contact structures are over the first and second semiconductor source or drain regions, respectively, the first and second trench contact structures both comprising a U-shaped metal layer and a T-shaped metal layer on and over the entirety of the U-shaped metal layer.Type: GrantFiled: December 30, 2017Date of Patent: March 23, 2021Assignee: Intel CorporationInventors: Subhash M. Joshi, Jeffrey S. Leib, Michael L. Hattendorf
-
Patent number: 10930557Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: March 16, 2020Date of Patent: February 23, 2021Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz
-
Publication number: 20200357916Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.Type: ApplicationFiled: July 27, 2020Publication date: November 12, 2020Applicant: Intel CorporationInventors: Sameer S. PRADHAN, Subhash M. JOSHI, Jin-Sung CHUN
-
Patent number: 10770591Abstract: The present description relates to the field of fabricating microelectronic devices having non-planar transistors. Embodiments of the present description relate to the formation of source/drain contacts within non-planar transistors, wherein a titanium-containing contact interface may be used in the formation of the source/drain contact with a discreet titanium silicide formed between the titanium-containing interface and a silicon-containing source/drain structure.Type: GrantFiled: March 21, 2019Date of Patent: September 8, 2020Assignee: Intel CorporationInventors: Sameer S. Pradhan, Subhash M. Joshi, Jin-Sung Chun
-
Publication number: 20200251387Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: ApplicationFiled: March 16, 2020Publication date: August 6, 2020Inventors: Mark T. BOHR, Tahir GHANI, Nadia M. RAHHAL-ORABI, Subhash M. JOSHI, Joseph M. STEIGERWALD, Jason W. KLAUS, Jack HWANG, Ryan MACKIEWICZ
-
Patent number: 10629483Abstract: A transistor comprises a substrate, a pair of spacers on the substrate, a gate dielectric layer on the substrate and between the pair of spacers, a gate electrode layer on the gate dielectric layer and between the pair of spacers, an insulating cap layer on the gate electrode layer and between the pair of spacers, and a pair of diffusion regions adjacent to the pair of spacers. The insulating cap layer forms an etch stop structure that is self aligned to the gate and prevents the contact etch from exposing the gate electrode, thereby preventing a short between the gate and contact. The insulator-cap layer enables self-aligned contacts, allowing initial patterning of wider contacts that are more robust to patterning limitations.Type: GrantFiled: October 16, 2018Date of Patent: April 21, 2020Assignee: Intel CorporationInventors: Mark T. Bohr, Tahir Ghani, Nadia M. Rahhal-Orabi, Subhash M. Joshi, Joseph M. Steigerwald, Jason W. Klaus, Jack Hwang, Ryan Mackiewicz