Patents by Inventor Sue Siyang Zhang

Sue Siyang Zhang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7950137
    Abstract: A method for manufacturing a write pole for perpendicular magnetic recording for accurately defining a side shield throat height and write pole flare point. The magnetic structure includes a write pole portion and first and second side shield portions. The side shields portions are magnetically connected with the write pole portion in a region in front of an intended air bearing surface plane (e.g. in the direction from which lapping will progress). The side shields portions are each separated from the write pole portion in a region behind the intended air bearing surface plane by notches that terminate at a desired location relative to the intended air bearing surface plane and which open up in a region behind the intended air bearing surface plane.
    Type: Grant
    Filed: June 21, 2007
    Date of Patent: May 31, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Thomas Dudley Boon, Jr., Ming Jiang, Jordan Asher Katine, Quang Le, Yinshi Liu, Xhavin Sinha, Sue Siyang Zhang, Yi Zheng
  • Patent number: 7881010
    Abstract: A method for manufacturing a magnetic write head having a write pole with a flared step feature that defines a secondary flare point. The method involves depositing a magnetic write pole material on a substrate and then depositing a magnetic material over the write pole material followed by a non-magnetic material. A first mask is formed having a front edge to define the location of the secondary flare point, and one or more material removal processes are used to remove portions of the magnetic layer and non-magnetic layer that are not protected by this first mask. The first mask is replaced by a second mask that is configured to define a write pole, and an ion milling is performed to define the write pole. Shadowing from the magnetic layer and non-magnetic layer form a flared secondary flare point.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: February 1, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hung-Chin Guthrie, Ming Jiang, Edward Hin Pong Lee, Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 7788798
    Abstract: A method for manufacturing a magnetic write head having a wrap around magnetic shield. The method allows a highly accurate short wavelength such as 193 mm photolithography to be used to accurately define the placement and critical dimension of wrap around magnetic shield. The method includes the formation of a magnetic write pole, top gap, and side gap and the deposition of a RIEable fill layer thereover, and CMP to planarization. A 193 nm photolithography and ion milling is used to form a mask over the RIEable layer and one or more reactive ion etching processes are performed to pattern the RIEable layer through 193 nm photolithography mask. A wrap around shield can then be electroplated into the opening formed in the RIEable layer.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: September 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hung-Chin Guthrie, Ming Jiang, Changqing Shi, Sue Siyang Zhang
  • Patent number: 7770283
    Abstract: A multi-step process for notching the P1 pole of the write head element of a magnetic head. In a first step following the fabrication of the P2 pole tip, a layer of protective material is deposited on the approximately vertical side surfaces of the P2 pole tip. Thereafter, a first ion milling step, utilizing a species such as argon, is performed to mill through the write gap layer and to notch into the P1 pole layer therebelow. The removal of redeposited material from the side surfaces of the P2 pole tip is thereafter accomplished and the protective material formed on the side surfaces of the P2 pole tip protects the P2 pole tip during the redeposition clean up step. Thereafter, the protective material is removed from the side surfaces of the P2 pole tip, and a second ion milling step is performed to further notch the P1 pole material.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: August 10, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Daniel Wayne Bedell, Vladimir Nikitin, Aron Pentek, Sue Siyang Zhang
  • Publication number: 20100163522
    Abstract: A method for manufacturing a magnetic write head. The write head is constructed by a method that includes depositing a magnetic write pole material and then depositing a hard mask over the magnetic material. An inorganic image transfer layer is formed over the hard mask. SiC, alumina, SiO2, SiN, Ta or TaOx. This image transfer is physically robust, so that it does not bend or tip over during manufacture. The image of a patterned photoresist layer can be transferred onto the underlying image transfer layer, and an ion milling can be performed to pattern the image of the image transfer layer onto the underlying hard mask and magnetic material, thereby forming a magnetic write pole.
    Type: Application
    Filed: December 30, 2008
    Publication date: July 1, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100163523
    Abstract: In one embodiment and method of the present invention, a coil of a write head is created by forming a P1 pedestal layer and a back gap layer and further forming a coil pattern consistent with the coil to be formed and insulator spacers dispersed in the coil pattern, using a non-damascene process, thereafter the coil is formed by plating using a damascene process.
    Type: Application
    Filed: February 17, 2010
    Publication date: July 1, 2010
    Inventors: Daniel Wayne Bedell, David Patrick Druist, Edward Hin Pong Lee, Jennifer Ai-Ming Loo, Vladimir Nikitin, Sue Siyang Zhang
  • Patent number: 7743487
    Abstract: A perpendicular write head includes a beveled main pole having corners defining a track width and having a planarized surface and encapsulated on either side thereof and below by an alumina layer, the alumina layer having a polished surface and extending above the main pole on either side thereof as steps.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: June 29, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Hamid Balamane, Michael Feldbaum, Ming Jiang, Aron Pentek, Neil Leslie Robertson, Sue Siyang Zhang
  • Publication number: 20100157472
    Abstract: A method for forming a magnetic write head having a trailing shield with a tapered and stepped, self aligned trailing magnetic shield. The shield has a tapered portion that tapers away from the write pole as it extends away from the ABS. This tapered portion helps to channel flux to the pole tip portion of the shield, while preventing the loss of write field to the shield. The stepped portion of the shield further helps to prevent the loss of write field and also defines a secondary throat height of the shield that can be accurately located relative to the air bearing surface.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 24, 2010
    Inventors: Wen-Chien David Hsiao, Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100155367
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered trailing edge step. The resulting tapered trailing edge step maximizes write field at very small bit sizes by preventing the magnetic saturation of the write pole at the pole tip. The method includes depositing a magnetic write pole material and then depositing a magnetic material over the magnetic write pole material. A RIE mask and hard mask are deposited over the magnetic bump material. A resist mask is formed over the RIE mask and hard mask, and a reactive ion etching is performed to transfer the pattern of the resist mask onto the underlying hard mask. Then an ion milling is performed to form a the magnetic step layer with a tapered edge that defines a tapered trailing edge step structure of the write pole.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 24, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100155363
    Abstract: A method for manufacturing a magnetic write head having a write pole with a tapered, stepped trailing edge. The method includes depositing a magnetic write pole material over a substrate, and then forming a magnetic step structure over the magnetic write pole material. A mask structure is then formed, which includes a multilayer hard mask formed over the magnetic write pole material and the magnetic step structure. An ion milling process is then performed to remove a portion of the write pole material to define a write pole. A non-magnetic material can be deposited and ion milling performed to form non-magnetic side gap layer at the sides of the write pole. A multi-step reactive ion milling process can then be performed to remove the remaining hard mask from over the write pole.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 24, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100155232
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic data recording, having a write pole with a tapered trailing edge for improved write field at small bit lengths. The trailing edge taper is formed by a deposition process that can be performed after the write pole flare point has already been formed, and especially after a wrap around shield side gap has been formed. This advantageously allows the distance between the write pole flare point and the trailing edge taper to be closely controlled.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100157474
    Abstract: A system according to one embodiment includes a magnetic pole; a bump structure above the pole, the bump structure having a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the pole, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the pole, wherein the second angle is greater than the first angle; and a shield above the bump structure. A method according to one embodiment includes forming a bump layer above a magnetic pole; removing a portion of the bump layer for forming a step therein; and milling the bump layer for defining thereon a first surface oriented at a first angle between 1° and 89° from a plane of deposition of the bump layer, and a second surface oriented at a second angle between 1° and 89° from the plane of deposition of the bump layer, wherein the second angle is greater than the first angle.
    Type: Application
    Filed: December 22, 2008
    Publication date: June 24, 2010
    Inventors: Wen-Chien David Hsiao, Vladimir Nikitin, Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20100155364
    Abstract: A method for manufacturing a magnetic write head having a write pole a tapered trailing edge and a trailing, wrap-around magnetic shield with a slanted bump structure that steps away from the magnetic write pole. The method involves first forming a write pole and non-magnetic side gap layers, and then depositing a non-magnetic RIEable material. A mask is formed on the RIEable material and a reactive ion etching (RIE) is performed to form the RIEable material layer into a nonmagnetic bump with a tapered front edge.
    Type: Application
    Filed: December 24, 2008
    Publication date: June 24, 2010
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 7715147
    Abstract: A magnetic write head for perpendicular magnetic recording that has a write pole and a trailing or side shield that has a leading edge that extends to or beyond the leading edge of write pole, thereby ensuring complete side magnetic shielding. The write head can be formed by forming the write pole on a non-magnetic substrate that is constructed of a material that can be readily removed by reactive ion etching (RIE). The write pole can be formed by depositing a layer of magnetic write pole material over the substrate and then forming a mask over the magnetic write pole material. An ion mill can be performed to define the write pole, and then a reactive ion etch can be performed to notch the substrate, so that when a non-magnetic shield gap material is deposited it will be below or at the bottom of the write pole. Then a magnetic shield material can be deposited to form a shield having a leading edge that extends beyond the leading edge of the write pole.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: May 11, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Michael Feldbaum, Quang Le, Aron Pentek, Sue Siyang Zhang
  • Publication number: 20100078406
    Abstract: A method for manufacturing a write pole for a perpendicular magnetic write head. The method employs a damascene process to construct the write pole with a very accurately controlled track width. The method includes depositing a layer of material that can be readily removed by reactive ion etching. This material can be referred to as a RIEable material. A mask is formed over the RIEable material and a reactive ion etching is performed to form a tapered trench in the RIEAble material. A CMP stop layer can the be deposited, and a write pole plated into the trench. A CMP can then be performed to define the trailing edge of the write pole. Another masking, etching and plating step can be performed to form a trailing, wrap-around magnetic shield.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Inventors: Hung-Chin Guthrie, Yimin Hsu, Ming Jiang, Sue Siyang Zhang
  • Patent number: 7648731
    Abstract: Methods of fabricating perpendicular write elements for perpendicular magnetic recording heads are discussed. In write element fabrication, write poles are fabricated according to one of many desired methods. The write poles during fabrication are typically covered by a hard mask and a photolithographic soft mask. According to the methods described herein, the soft mask is removed such as by chemical etching. The hard mask is then removed, such as by CMP and ion etching, to expose the write poles. Shield gap material may then be deposited on the write poles to define the shield gap between the write poles and the trailing shields. Trailing shield material may then be deposited on the shield gap material to form the trailing shields corresponding with the write poles.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: January 19, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Hung-Chin Guthrie, Ming Jiang, Yinshi Liu, Aron Pentek, John J. Yang, Sue Siyang Zhang
  • Patent number: 7588884
    Abstract: A method of enhancing alignment marks defined in a relatively thin layer on a wafer by etching the alignment marks into an underlying alignment mark transfer layer is described. The target area for the alignment marks is prepared by depositing material for the transfer layer. In alternative embodiments an oversized trench is formed in the target area prior to the deposition of the transfer layer. The alignment marks can fabricated in the layer(s) deposited by the existing process or alternatively, the original layers can be removed and replaced with a layer of material selected to have comparable etching properties (definition layer).
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: September 15, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Nian-Xiang Sun, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20090152235
    Abstract: A method for manufacturing a magnetic write head having a stepped trailing shield. The stepped trailing shield is formed by forming a non-magnetic bump over a write pole prior to electroplating a wrap-around magnetic shield. The method allows the location of the front edge of the bump relative to the back edge of the wrap-around shield to be monitored by measuring the electrical resistance of an electrical lapping guide formed concurrently with these features. This concurrent formation of a lapping guide can be used to define the relative location of other features as well, such as the location of a back edge of a wrap-around shield relative to a flare point of a write pole.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Inventors: Wen-Chien David Hsiao, Hieu Lam, Vladimir Nikitin, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20090152234
    Abstract: A method for manufacturing a magnetic write head having a write pole with a flared step feature that defines a secondary flare point. The method involves depositing a magnetic write pole material on a substrate and then depositing a magnetic material over the write pole material followed by a non-magnetic material. A first mask is formed having a front edge to define the location of the secondary flare point, and one or more material removal processes are used to remove portions of the magnetic layer and non-magnetic layer that are not protected by this first mask. The first mask is replaced by a second mask that is configured to define a write pole, and an ion milling is performed to define the write pole. Shadowing from the magnetic layer and non-magnetic layer form a flared secondary flare point.
    Type: Application
    Filed: December 13, 2007
    Publication date: June 18, 2009
    Inventors: Hung-Chin Guthrie, Ming Jiang, Edward Hin Pong Lee, Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Publication number: 20090139958
    Abstract: A method for manufacturing a magnetic write head for perpendicular magnetic recording. The method includes forming a write pole using a mask that includes a hard mask layer deposited over the write pole laminate material, and a thick, physically robust image transfer layer. The image transfer layer can be a material such as AlTiO that can be patterned by a reactive ion etching process, but which also resists deformation during processing. This process allows a write pole and wrap-around trailing shield to be constructed at very narrow track widths without the mask deformation and fencing problems experienced by prior art methods.
    Type: Application
    Filed: November 29, 2007
    Publication date: June 4, 2009
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng