Patents by Inventor Sujeet Kumar

Sujeet Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9070489
    Abstract: Mixed phase complex lithium metal oxides are described with an overall stoichiometry represented by a formula Li1+aNibCocMndOx, ?0.05?a?0.14, 0.1?b?0.25, 0?c?0.2, 0.45?d?0.8, a+b+c+d=1 and (1+a)/(b+c+d)?1.325. The compositions are generally very high in manganese content. The compositions can have x-ray diffractograms and differential capacity profiles suggesting the presence of a layered (Li2MnO3)—layered (LiMetalO2)—spinel crystal structure. The compositions can exhibit surprisingly low first cycle irreversible capacity losses while maintaining high specific discharge capacities, even at high discharge rates. Stabilizing coatings have been found to further significantly improve performance.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: June 30, 2015
    Assignee: Envia Systems, Inc.
    Inventors: Sanjeev Sharma, Subramanian Venkatachalam, Yogesh Kumar Anguchamy, Herman A. Lopez, Sujeet Kumar
  • Patent number: 9051528
    Abstract: Substantially homogenous compositions in accordance with the present disclosure can exist in various forms, such as bulk materials, coatings, films, laminates, inserts, or overlays, and include at least one polymer such as SU-8, at least one liquid lubricant, and optionally at least one nanomaterial that serves as an inorganic filler material. Such compositions exhibit enhanced tribological and mechanical properties compared to the at least one polymer in isolation, for instance, a 50% or greater coefficient of friction reduction, a 100% or greater wear life increase, a 10% or greater elastic modulus increase, and/or a 10% or greater hardness increase. The at least one nanomaterial can include a first nanomaterial providing increased hardness, and a second nanomaterial providing increased elastic modulus. Compositions in accordance with the present disclosure are suitable for biological and non-biological applications.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: June 9, 2015
    Assignee: NATIONAL UNIVERSITY OF SINGAPORE
    Inventors: Sujeet Kumar Sinha, Prabakaran Saravanan, Satyanarayana Nalam
  • Patent number: 9012073
    Abstract: Compositions are described that can provide high energy density active materials for use in negative electrodes of lithium ion batteries. These materials generally comprise silicon and/or tin, and may further comprise carbon and/or zinc as well as other elements in appropriate embodiments. The active materials can have moderate volume changes upon cycling in a lithium ion battery.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: April 21, 2015
    Assignee: Envia Systems, Inc.
    Inventor: Sujeet Kumar
  • Publication number: 20150058604
    Abstract: A tool for formally verifying forwarding paths in an information pipeline. The tool creates two logic design copies of the pipeline to be verified. The tool retrieves a first and a second instruction, which have previously been proven to compute a mathematically correct result when executed separately. The tool defines driver input functions for issuing instructions to the two logic design copies. In accordance with the driver input functions, the tool issues instructions to the two logic design copies. The tool abstracts data flow of the two logic design copies to isolate forwarding paths for verification. The tool adjusts for latency differences between the first and second logic design copies. The tool checks a register for results, and when results from of two logic design copies become available in the register, the tool verifies the results to conclusively prove the correctness of all states of the information pipeline.
    Type: Application
    Filed: January 9, 2014
    Publication date: February 26, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anand B. Arunagiri, UDO KRAUTZ, SUJEET KUMAR, VIRESH PARUTHI
  • Publication number: 20150058601
    Abstract: A tool for formally verifying forwarding paths in an information pipeline. The tool creates two logic design copies of the pipeline to be verified. The tool retrieves a first and a second instruction, which have previously been proven to compute a mathematically correct result when executed separately. The tool defines driver input functions for issuing instructions to the two logic design copies. In accordance with the driver input functions, the tool issues instructions to the two logic design copies. The tool abstracts data flow of the two logic design copies to isolate forwarding paths for verification. The tool adjusts for latency differences between the first and second logic design copies. The tool checks a register for results, and when results from of two logic design copies become available in the register, the tool verifies the results to conclusively prove the correctness of all states of the information pipeline.
    Type: Application
    Filed: August 20, 2013
    Publication date: February 26, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anand B. Arunagiri, Udo Krautz, Sujeet Kumar, Viresh Paruthi
  • Publication number: 20150050535
    Abstract: Battery designs are provided that exhibit commercially suitable cycling properties for consumer electronics with silicon based active materials in the electrodes. The batteries can have stacked or wound electrodes and suitable electrode designs.
    Type: Application
    Filed: August 15, 2014
    Publication date: February 19, 2015
    Inventors: Shabab Amiruddin, Bing Li, Swapnil J. Dalavi, Sujeet Kumar
  • Patent number: 8947826
    Abstract: A durable wear-resistant coating consists of an atomically mixed layer on the surface of the head or media which is developed by bombardment of the surface with energetic C ions with optimized parameters. This mixed layer is covered with a hard DLC overcoat. This mixed interlayer is able to strongly bond the overcoat to the head or media substrate and improve the tribological properties of the overcoat. In this method a very thin layer of a carbide former material can be used as an interlayer before bombarding the surface with C ions which provides a composite interlayer containing C and species from interlayer and substrate. This composite interlayer bonds the DLC overact to the ceramic substrate of the head or the metallic substrate of the media. This interlayer by itself is protective enough to protect the head media of the hard drives against wear and corrosion.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: February 3, 2015
    Assignee: National University of Singapore
    Inventors: Charanjit Singh Bhatia, Ehsan Rismani-Yazdi, Sujeet Kumar Sinha
  • Patent number: 8928286
    Abstract: Lithium ion batteries can be activated and then cycled to exploit a moderate fraction of the discharge cycling capacity such that the discharge capacity and average discharge voltage stay within initial values for thousands of cycles. The superior cycling performance has been achieved at relatively high discharge rates and for practical battery formats. Lithium ion battery performance can also be achieved with superior cycling performance with partially activated batteries such that good discharge capacities can be exploited for many thousands of cycles before the discharge capacity and average discharge voltage drops more than 20% from initial values. The positive electrode active material can be a lithium rich metal oxide. The activation of the battery can comprise phase changes of the active materials. As described herein, the phase changes can be manipulated to exploit a reasonable fraction of the available high capacity of the material while providing outstanding cycling stability.
    Type: Grant
    Filed: August 19, 2011
    Date of Patent: January 6, 2015
    Assignee: Envia Systems, Inc.
    Inventors: Shabab Amiruddin, Bing Li, Sujeet Kumar
  • Patent number: 8916294
    Abstract: Lithium rich metal oxyfluorides are described with high specific capacity and, good cycling properties. The materials have particularly good high rate capabilities. The fluorine dopant can be introduced in a low temperature process to yield the materials with desirable cycling properties. In some embodiments, the positive electrode active materials have a composition represented approximately by the formula Li1+xNi?Mn?Co?A?O2?zFz where: x is from about 0.02 to about 0.19, ? is from about 0.1 to about 0.4, ? is from about 0.35 to about 0.869, ? is from about 0.01 to about 0.2, ? is from 0.0 to about 0.1 and z is from about 0.01 to about 0.2, where A is Mg, Zn, Al, Ga, B, Zr, Ti, Ca, Ce, Y, Nb or combinations thereof.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 23, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Sujeet Kumar, Herman Lopez, Subramanian Venkatachalam, Deepak Karthikeyan
  • Publication number: 20140370387
    Abstract: Composite silicon based materials are described that are effective active materials for lithium ion batteries. The composite materials comprise processed, e.g., high energy mechanically milled, silicon suboxide and graphitic carbon in which at least a portion of the graphitic carbon is exfoliated into graphene sheets. The composite materials have a relatively large surface area, a high specific capacity against lithium, and good cycling with lithium metal oxide cathode materials. The composite materials can be effectively formed with a two step high energy mechanical milling process. In the first milling process, silicon suboxide can be milled to form processed silicon suboxide, which may or may not exhibit crystalline silicon x-ray diffraction. In the second milling step, the processed silicon suboxide is milled with graphitic carbon. Composite materials with a high specific capacity and good cycling can be obtained in particular with balancing of the processing conditions.
    Type: Application
    Filed: June 13, 2013
    Publication date: December 18, 2014
    Inventors: Yogesh Kumar Anguchamy, Haixia Deng, Yongbong Han, Charan Masarapu, Sujeet Kumar, Herman A. Lopez
  • Publication number: 20140234716
    Abstract: Lithium rich and manganese rich lithium metal oxides are described that provide for excellent performance in lithium-based batteries. The specific compositions can be engineered within a specified range of compositions to provide desired performance characteristics. Selected compositions can provide high values of specific capacity with a reasonably high average voltage. Compositions of particular interest can be represented by the formula, x Li2MnO3.(1?x) Li Niu+?Mnu??CowAyO2). The compositions undergo significant first cycle irreversible changes, but the compositions cycle stably after the first cycle.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 21, 2014
    Applicant: Envia Systems, Inc.
    Inventors: Herman A. Lopez, Subramanian Venkatachalam, Deepak Kumaar Kandasamy Karthikeyan, Sujeet Kumar
  • Patent number: 8765306
    Abstract: Improved cycling of high voltage lithium ion batteries is accomplished through the use of a formation step that seems to form a more stable structure for subsequent cycling and through the improved management of the charge-discharge cycling. In particular, the formation charge for the battery can be performed at a lower voltage prior to full activation of the battery through a charge to the specified operational voltage of the battery. With respect to management of the charging and discharging of the battery, it has been discovered that for the lithium rich high voltage compositions of interest that a deeper discharge can preserve the cycling capacity at a greater number of cycles. Battery management can be designed to exploit the improved cycling capacity obtained with deeper discharges of the battery.
    Type: Grant
    Filed: March 26, 2010
    Date of Patent: July 1, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Shabab Amiruddin, Subramanian Venkatachalam, Herman A. Lopez, Sujeet Kumar
  • Publication number: 20140178760
    Abstract: A positive electrode active material comprising a lithium rich metal oxide active composition coated with aluminum zinc oxide coating composition is disclosed. The aluminum zinc oxide can be represented by the formula AlxZn1-3x/2O, where x is from about 0.01 to about 0.6. In some embodiments, the material can have an average voltage that is very stable with cycling, and a specific capacity of at least about 175 mAh/g and an average voltage of at least about 3.55V discharged at a rate of C/3 from 4.6V to 2V against lithium. The material can further comprise an overcoat of metal halide over the aluminum zinc oxide coating. In some embodiments, the material can have from about 1 mole percent to about 15 mole percent aluminum zinc oxide coating and from about 0.5 mole percent to about 3 mole percent aluminum halide overcoat.
    Type: Application
    Filed: December 20, 2012
    Publication date: June 26, 2014
    Applicant: ENVIA SYSTEMS, INC.
    Inventors: Charles A. Bowling, Subramanian Venkatachalam, Herman A. Lopez, Sujeet Kumar
  • Patent number: 8741485
    Abstract: Lithium rich and manganese rich lithium metal oxides are described that provide for excellent performance in lithium-based batteries. The specific compositions can be engineered within a specified range of compositions to provide desired performance characteristics. Selected compositions can provide high values of specific capacity with a reasonably high average voltage. Compositions of particular interest can be represented by the formula, x Li2MnO3.(1?x) Li Niu+?Mnu??CowAyO2. The compositions undergo significant first cycle irreversible changes, but the compositions cycle stably after the first cycle.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: June 3, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Herman A. Lopez, Subramanian Venkatachalam, Deepak Kumaar Kandasamy Karthikeyan, Sujeet Kumar
  • Patent number: 8741484
    Abstract: Positive electrode active materials comprising a dopant in an amount of 0.1 to 10 mole percent of Mg, Ca, Sr, Ba, Zn, Cd or a combination thereof are described that have high specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. Some materials of interest have the formula Li1+xNi?Mn?-?Co?A?X?O2?zFz, where x ranges from about 0.01 to about 0.3, ? ranges from about 0.001 to about 0.15, and the sum x+?+?+?+?+? can approximately equal 1.0. The materials can be coated with a metal fluoride to improve the performance of the materials especially upon cycling. The materials generally can have a tap density of at least 1.8 g/mL. Also, the materials can have an average discharge voltage of around 3.6 V.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: June 3, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Deepak Kumaar Kandasamy Karthikeyan, Subramaninan Venkatachalam, Shabab Amiruddin, Herman A. Lopez, Sujeet Kumar
  • Patent number: 8697288
    Abstract: Lithium ion secondary batteries are described that have high total energy, energy density and specific discharge capacity upon cycling at room temperature and at a moderate discharge rate. The improved batteries are based on high loading of positive electrode materials with high energy capacity. This capability is accomplished through the development of positive electrode active materials with very high specific energy capacity that can be loaded at high density into electrodes without sacrificing performance. The high loading of the positive electrode materials in the batteries are facilitated through using a polymer binder that has an average molecular weight higher than 800,000 atomic mass unit.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: April 15, 2014
    Assignee: Envia Systems, Inc.
    Inventors: James P. Buckley, Sujeet Kumar
  • Patent number: 8673490
    Abstract: Combinations of materials are described in which high energy density active materials for negative electrodes of lithium ion batteries. In general, metal alloy/intermetallic compositions can provide the high energy density. These materials can have moderate volume changes upon cycling in a lithium ion battery. The volume changes can be accommodated with less degradation upon cycling through the combination with highly porous electrically conductive materials, such as highly porous carbon and/or foamed current collectors. Whether or not combined with a highly porous electrically conductive material, metal alloy/intermetallic compositions with an average particle size of no more than a micron can be advantageously used in the negative electrodes to improve cycling properties.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: March 18, 2014
    Assignee: Envia Systems, Inc.
    Inventors: Sujeet Kumar, James P. Buckley
  • Patent number: 8673407
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: March 18, 2014
    Assignee: NeoPhotonics Corporation
    Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
  • Patent number: 8660816
    Abstract: A system, method, and computer program product are described for distinguishing between a computing system that is hung in a hang state and systems that are in an idle or otherwise non-hang state which do not need intervention before regaining the ability to adequately process work. According to some approaches, heuristics are employed to perform hang and idle system detection and validation. Data representative of systems resources are analyzed and transformed in order to identify systems that are in a hang state.
    Type: Grant
    Filed: May 7, 2009
    Date of Patent: February 25, 2014
    Assignee: Oracle International Corporation
    Inventors: Joy Mukherjee, Angelo Pruscino, Sunil Kumar, Sujeet Kumar, Anuj Tripathi, Macharapu Sai Prasanth
  • Publication number: 20140050972
    Abstract: Batteries with particularly high energy capacity and low internal impedance have been described herein. The batteries can exhibit extraordinary long cycling with acceptable low amounts of fade. Pouch batteries using high specific capacity lithium rich metal oxide as positive electrode material combined with graphitic carbon anode can reach an energy density of at least about 180 Wh/kg at a rate of C/3 from 4.35V to 2V at room temperature while having a room temperature areas specific DC resistance of no more than about 75 ohms-cm2 at 20% SOC based on a full charge to 4.35V. High specific capacity lithium rich metal oxide with specific stoichiometry ranges used in these batteries are disclosed.
    Type: Application
    Filed: August 17, 2012
    Publication date: February 20, 2014
    Inventors: Shabab Amiruddin, Subramanian Venkatachalam, Bing Li, Charles Bowling, Yezi Bei, Deepak Kumaar Karthikeyan, Herman Lopez, Sujeet Kumar