Patents by Inventor Sujeet Kumar

Sujeet Kumar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7214446
    Abstract: Batteries based on nanoparticles are demonstrated that achieve high energy densities. Vanadium oxide nanoparticles can have several different stoichiometries and corresponding crystal lattices. The nanoparticles preferably have average diameters less than about 500 nm and more preferably less than about 150 nm. Cathodes produced using the vanadium oxide nanoparticles and a binder can be used to construct lithium batteries or lithium ion batteries. The nanoparticles may have energy densities greater than about 900 Wh/kg.
    Type: Grant
    Filed: June 29, 2000
    Date of Patent: May 8, 2007
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Sujeet Kumar, James T. Gardner
  • Patent number: 7112449
    Abstract: Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: September 26, 2006
    Assignee: NanoGram Corporation
    Inventors: Xiangxin Bi, Sujeet Kumar, Craig R. Horne, Ronald J. Mosso, James T. Gardner, Shivkumar Chiruvolo, Seung M. Lim
  • Patent number: 7101520
    Abstract: Methods for producing metal/metalloid oxide particles comprise rare earth metals herein include reacting a reactant stream in a gas flow. The reactant stream includes a rare earth metal precursor and an oxygen source. A collection of particles comprising metal/metalloid oxide have an average particle size from about 15 nm to about 1 micron. The metal/metalloid oxide comprises a non-rare earth metal oxide wherein less than about 25 percent of a non-rare earth metal is substituted with a rare earth metal. The metal/metalloid oxide particles can be reacted with H2S or C2S to form corresponding metal/metalloid sulfide particles. The metal/metalloid sulfide particles can be doped with rare earth metals. The particles are useful as phosphors, for example for use in displays.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: September 5, 2006
    Assignee: NanoGram Corporation
    Inventor: Sujeet Kumar
  • Publication number: 20060147369
    Abstract: Methods are described that have the capability of producing submicron/nanoscale particles, in some embodiments dispersible, at high production rates. In some embodiments, the methods result in the production of particles with an average diameter less than about 75 nanometers that are produced at a rate of at least about 35 grams per hour. In other embodiments, the particles are highly uniform. These methods can be used to form particle collections and/or powder coatings. Powder coatings and corresponding methods are described based on the deposition of highly uniform submicron/nanoscale particles.
    Type: Application
    Filed: February 17, 2006
    Publication date: July 6, 2006
    Inventors: Xiangxin Bi, Nobuyuki Kambe, Craig Horne, James Gardner, Ronald Mosso, Shivkumar Chiruvolu, Sujeet Kumar, William McGovern, Pierre DeMascarel, Robert Lynch
  • Patent number: 7029513
    Abstract: An aerosol delivery apparatus is used to deliver an aerosol into a reaction chamber for chemical reaction to produce reaction products such as nanoparticles. A variety of improved aerosol delivery approaches provide for the production of more uniform reaction products. In preferred embodiments, a reaction chamber is used that has a cross section perpendicular to the flow of reactant having a dimension along a major axis greater than a dimension along a minor axis. The aerosol preferably is elongated along the major axis of the reaction chamber.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: April 18, 2006
    Assignee: NanoGram Corporation
    Inventors: James T. Gardner, Sujeet Kumar, Ronald M. Cornell, Ronald J. Mosso, Xiangxin Bi
  • Publication number: 20050264811
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Application
    Filed: July 28, 2005
    Publication date: December 1, 2005
    Inventors: Xiangxin Bi, Elizabeth Nevis, Ronald Mosso, Michael Chapin, Shivkumar Chiruvolu, Sardar Khan, Sujeet Kumar, Herman Lopez, Nguyen Huy, Craig Horne, Michael Bryan, Eric Euvrard
  • Patent number: 6952504
    Abstract: Three dimensional optical structures are described that can have various integrations between optical devices within and between layers of the optical structure. Optical turning elements can provide optical pathways between layers of optical devices. Methods are described that provide for great versatility on contouring optical materials throughout the optical structure. Various new optical devices are enabled by the improved optical processing approaches.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: October 4, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Xiangxin Bi, Elizabeth Anne Nevis, Ronald J. Mosso, Michael Edward Chapin, Shivkumar Chiruvolu, Sardar Hyat Khan, Sujeet Kumar, Herman Adrian Lopez, Nguyen Tran The Huy, Craig Richard Horne, Michael A. Bryan, Eric Euvrard
  • Publication number: 20050200036
    Abstract: Improvements to chemical reaction systems provide for the production of commercial quantities of chemical products, such as chemical powders. The improved chemical reaction systems can accommodate a large reactant flux for the production of significant amounts of product. Preferred reaction systems are based on laser pyrolysis. Features of the system provide for the production of highly uniform product particles.
    Type: Application
    Filed: May 3, 2005
    Publication date: September 15, 2005
    Inventors: Ronald Mosso, Xiangxin Bi, James Gardner, Sujeet Kumar, Samuel Phillip
  • Publication number: 20050170192
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical optical and electro-optical devices can be formed from the composites.
    Type: Application
    Filed: April 4, 2005
    Publication date: August 4, 2005
    Inventors: Nobuyuki Kambe, Yigal Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolua, Sujeet Kumar, David McQueen
  • Publication number: 20050158690
    Abstract: Combinatorial synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of product composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition, the second quantity of product composition being material different from the first quantity of product composition. An apparatus includes a nozzle connected to a reactant source and a plurality of collectors. The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
    Type: Application
    Filed: December 14, 2004
    Publication date: July 21, 2005
    Inventors: Xiangxin Bi, Sujeet Kumar, Craig Horne, Ronald Mosso, James Gardner, Shivkumar Chiruvolo, Seung Lim
  • Publication number: 20050132659
    Abstract: A collection of nanoparticles of aluminum oxide have been produced by laser pyrolysis have a very narrow distribution of particle diameters. Preferably, the distribution of particle diameters effectively does not have a tail such that almost no particles have a diameter greater than about 4 times the average diameter. The pyrolysis preferably is performed by generating a molecular stream containing an aluminum precursor, an oxidizing agent and an infrared absorber. The pyrolysis can be performed with an infrared laser such as a CO2 laser.
    Type: Application
    Filed: January 28, 2005
    Publication date: June 23, 2005
    Inventors: Sujeet Kumar, Hariklia Reitz, Xiangxin Bi, Nobuyuki Kambe
  • Publication number: 20050118411
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Application
    Filed: October 29, 2004
    Publication date: June 2, 2005
    Inventors: Craig Horne, Pierre DeMascarel, Christian Honeker, Benjamin Chaloner-Gill, Herman Lopez, Xiangxin Bi, Ronald Mosso, William McGovern, James Gardner, Sujeet Kumar, James Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chinuvolu, Jesse Jur
  • Patent number: 6881490
    Abstract: Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered copolymers. Various electrical, optical and electro-optical devices can be formed from the composites.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: April 19, 2005
    Assignee: NanoGram Corporation
    Inventors: Nobuyuki Kambe, Yigal Dov Blum, Benjamin Chaloner-Gill, Shivkumar Chiruvolu, Sujeet Kumar, David Brent MacQueen
  • Patent number: 6849334
    Abstract: Nanoscale particles, particle coatings/particle arrays and corresponding consolidated materials are described based on an ability to vary the composition involving a wide range of metal and/or metalloid elements and corresponding compositions. In particular, metalloid oxides and metal-metalloid compositions are described in the form of improved nanoscale particles and coatings formed from the nanoscale particles. Compositions comprising rare earth metals and dopants/additives with rare earth metals are described. Complex compositions with a range of host compositions and dopants/additives can be formed using the approaches described herein. The particle coating can take the form of particle arrays that range from collections of disbursable primary particles to fused networks of primary particles forming channels that reflect the nanoscale of the primary particles. Suitable materials for optical applications are described along with some optical devices of interest.
    Type: Grant
    Filed: March 15, 2002
    Date of Patent: February 1, 2005
    Assignee: NeoPhotonics Corporation
    Inventors: Craig R. Horne, Pierre J. DeMascarel, Christian C. Honeker, Benjamin Chaloner-Gill, Herman A. Lopez, Xiangxin Bi, Ronald J. Mosso, William E. McGovern, James T. Gardner, Sujeet Kumar, James A. Gilliam, Vince Pham, Eric Euvrard, Shivkumar Chiruvolu, Jesse Jur
  • Publication number: 20040197659
    Abstract: Lithium metal oxide particles have been produced having average diameters less than about 100 nm. Composite metal oxides of particular interest include, for example, lithium cobalt oxide, lithium nickel oxide, lithium titanium oxides and derivatives thereof. These nanoparticles composite metal oxides can be used as electroactive particles in lithium or lithium ion batteries. Batteries of particular interest include lithium titanium oxide in the negative electrode and lithium cobalt manganese oxide in the positive electrode.
    Type: Application
    Filed: April 19, 2004
    Publication date: October 7, 2004
    Applicant: NanoGram Corporation
    Inventors: Sujeet Kumar, Craig R. Horne
  • Publication number: 20040173780
    Abstract: Methods for producing metal/metalloid oxide particles comprise rare earth metals herein include reacting a reactant stream in a gas flow. The reactant stream includes a rare earth metal precursor and an oxygen source. A collection of particles comprising metal/metalloid oxide have an average particle size from about 15 nm to about 1 micron. The metal/metalloid oxide comprises a non-rare earth metal oxide wherein less than about 25 percent of a non-rare earth metal is substituted with a rare earth metal. The particles are useful as phosphors, for example for use in displays.
    Type: Application
    Filed: February 4, 2004
    Publication date: September 9, 2004
    Applicant: NanoGram Corporation
    Inventor: Sujeet Kumar
  • Publication number: 20040120882
    Abstract: Collections of particles comprising multiple a metal oxide can be formed with average particle sizes less than about 500 nm. In some embodiments, the particle collections have particle size distributions such that at least about 95 percent of the particles have a diameter greater than about 40 percent of the average diameter and less than about 160 percent of the average diameter. Also, in further embodiments, the particle collections have particle size distribution such that effectively no particles have a diameter greater than about four times the average diameter of the collection of particles.
    Type: Application
    Filed: September 4, 2003
    Publication date: June 24, 2004
    Inventors: Sujeet Kumar, Hariklia Dris Reitz, Craig R. Horne, James T. Gardner, Ronald J. Mosso, Xiangxin Bi
  • Patent number: 6749648
    Abstract: Lithium metal oxide particles have been produced having average diameters less than about 100 nm. Composite metal oxides of particular interest include, for example, lithium cobalt oxide, lithium nickel oxide, lithium titanium oxides and derivatives thereof. These nanoparticles composite metal oxides can be used as electroactive particles in lithium or lithium ion batteries. Batteries of particular interest include lithium titanium oxide in the negative electrode and lithium cobalt manganese oxide in the positive electrode.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: June 15, 2004
    Assignee: NanaGram Corporation
    Inventors: Sujeet Kumar, Craig R. Horne
  • Patent number: 6749966
    Abstract: Laser pyrolysis can be used to produce directly metal vanadium oxide composite nanoparticles. To perform the pyrolysis a reactant stream is formed including a vanadium precursor and a second metal precursor. The pyrolysis is driven by energy absorbed from a light beam. Metal vanadium oxide nanoparticles can be incorporated into a cathode of a lithium based battery to obtain increased energy densities. Implantable defibrillators can be constructed with lithium based batteries having increased energy densities.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: June 15, 2004
    Assignee: NanoGram Devices Corporation
    Inventors: Hariklia Dris Reitz, James P. Buckley, Sujeet Kumar, Yu K. Fortunak, Xiangxin Bi
  • Patent number: 6726990
    Abstract: A collection of silicon oxide nanoparticles have an average diameter from about 5 nm to about 100 nm. The collection of silicon oxide nanoparticles effectively include no particles with a diameter greater than about four times the average diameter. The particles generally have a spherical morphology. Methods for producing the nanoparticles involve laser pyrolysis. The silicon oxide nanoparticles are effective for the production of improved polishing compositions including compositions useful for chemical-mechanical polishing.
    Type: Grant
    Filed: May 27, 1998
    Date of Patent: April 27, 2004
    Assignee: NanoGram Corporation
    Inventors: Sujeet Kumar, Xiangxin Bi, Nobuyuki Kambe