Patents by Inventor Sukrit Mukhopadhyay

Sukrit Mukhopadhyay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210020837
    Abstract: Provided is a composition comprising a compound having structure (I) wherein each of A1, A2, A3, A4, A5, A6, A7, and A8 is independently CR12 or N; wherein one to four of A1, A2, A3, A4, A5, A6, A7, and A8 are N; wherein J1 is C or Si; wherein J2 is C(R13)n, O, (C(R13)n)2, S, NR13, or Se; wherein n is 1 or 2; wherein each of R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, and R13 is independently H, deuterium, or an organic group. Also provided is a method of making the composition, a method of making an organic light-emitting diode using the composition, and an organic light-emitting diode made by that method.
    Type: Application
    Filed: August 11, 2017
    Publication date: January 21, 2021
    Inventors: Laura HAVENS, Sukrit Mukhopadhyay, David S. Laitar, David D. Devore, Aaron A. Rachford, Erich J. Moiitor
  • Publication number: 20210002467
    Abstract: A process to functionalized organo-metal compounds with silyl-based electrophiles. The process includes combining an organo-metal compound, a silyl-based functionalization agent, and an optional solvent. Functionalized silanes and silyl-terminated polyolefins can be prepared by this process.
    Type: Application
    Filed: March 18, 2019
    Publication date: January 7, 2021
    Inventors: Matthias Ober, Longyan Liao, Jasson T. Patton, Sukrit Mukhopadhyay, Jerzy Klosin, David D. Devore
  • Patent number: 10868253
    Abstract: A single phase liquid formulation useful for producing an organic charge transporting film; said formulation comprising: (a) a first polymer resin having Mw less than 5,000; (b) a second polymer resin having Mw at least 7,000; (c) a first solvent having a boiling point from 50 to 165° C.; and (d) a second solvent having a boiling point from 180 to 300° C.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: December 15, 2020
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Chun Liu, Peter Trefonas, III, Sukrit Mukhopadhyay, Liam P. Spencer, David D. Devore, Ashley Inman
  • Publication number: 20200354383
    Abstract: A method of producing a polyether polyol includes reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality at least 2. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 incudes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Application
    Filed: September 14, 2018
    Publication date: November 12, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Jeffery Goodwin
  • Patent number: 10818860
    Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: October 27, 2020
    Assignees: Rohm and Haas Electronic Materials LLC, Dow Global Technologies LLC
    Inventors: Anatoliy N Sokolov, Brian Goodfellow, Robert David Grigg, Liam P Spencer, John W Kramer, David D Devore, Sukrit Mukhopadhyay, Peter Trefonas, III
  • Publication number: 20200303659
    Abstract: Provided is a composition comprising one or more phenanthroquinazoline-core compounds having structure (I) wherein each of R1 and R2 is independently a substituted or unsubstituted phenyl group.
    Type: Application
    Filed: March 15, 2017
    Publication date: September 24, 2020
    Applicants: Dow Global Technologies LLC, Rohm and Haas Electronic Materials Korea Ltd., Rohm and Haas Electronic Materials Korea Ltd.
    Inventors: Kyoung Moo Koh, Mark E. Ondari, Sukrit Mukhopadhyay, Timothy J. Gallagher, Hong-Yeop Na
  • Publication number: 20200277436
    Abstract: A method of producing an alcohol ethoxylate surfactant or lubricant, the method including reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, the low molecular weight initiator having a nominal hydroxyl functionality at least 1, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a first fluoroalkyl-substituted phenyl group, R2 includes a second fluoroalkyl-substituted phenyl group or a first fluoro/chloro-substituted phenyl group, R3 includes a third fluoroalkyl-substituted phenyl group or a second fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Application
    Filed: September 14, 2018
    Publication date: September 3, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Bruce D. Hook, Wanglin Yu, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Publication number: 20200239619
    Abstract: A method of producing a polyether polyol includes reacting a low molecular weight initiator with one or more monomers in the presence of a polymerization catalyst, and the low molecular weight initiator has a nominal hydroxyl functionality of at least 2. The one or more monomers includes at least one selected from propylene oxide and butylene oxide. The polymerization catalyst is a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2, R3, and R4 are each independent, R1 includes a fluoroalkyl-substituted phenyl group, R2 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, R3 includes a fluoroalkyl-substituted phenyl group or a fluoro/chloro-substituted phenyl group, and optional R4 includes a functional group or functional polymer group, R1 being different from at least one of R2 and R3.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 30, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Anthony P. Gies, Manjiri R. Paradkar
  • Publication number: 20200231738
    Abstract: A method of producing a polyether polyol that includes reacting a low molecular weight initiator with one or more monomers in the presence of a polymerization catalyst, the low molecular weight initiator having a number average molecular weight of less than 1,000 g/mol and a nominal hydroxyl functionality at least 2, the one or more monomers including at least one selected from propylene oxide and butylene oxide, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1. Whereas, M is boron, aluminum, indium, bismuth or erbium, R1, R2, and R3 each includes a same fluoroalkyl-substituted phenyl group, and optional R4 includes a functional group or functional polymer group. The method further includes forming a polyether polyol having a number average molecular weight of greater than the number average molecular weight of the low molecular weight initiator in the presence of the Lewis acid catalyst.
    Type: Application
    Filed: September 14, 2018
    Publication date: July 23, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Anthony P. Gies, Manjiri R. Paradkar, Justin M. Notestein, SonBinh T. Nguyen
  • Publication number: 20200199291
    Abstract: A Lewis acid polymerization catalyst has a general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, R1, R2, R3, and R4 are each independent, R1 is a 3,5-bis(trifluoromethyl)-substituted phenyl group, R2 is the 3,5-bis(trifluoromethyl) substituted phenyl group or a first fluoro-substituted phenyl group selected from Set 1 structures, R3 is independently a second fluoro-substituted phenyl group selected from the Set 1 structures, and optional R4 includes a third functional group or functional polymer group.
    Type: Application
    Filed: September 14, 2018
    Publication date: June 25, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson
  • Publication number: 20200199294
    Abstract: A method of producing an alcohol ethoxylate surfactant or lubricant includes reacting a low molecular weight initiator with ethylene oxide in the presence of a polymerization catalyst, the low molecular weight initiator having a nominal hydroxyl functionality at least 1, and the polymerization catalyst being a Lewis acid catalyst having the general formula M(R1)1(R2)1(R3)1(R4)0 or 1, whereas M is boron, aluminum, indium, bismuth or erbium, R1, R2 and R3 each includes a same fluoroalkyl-substituted phenyl group, and optional R4 includes a functional group or functional polymer group. R1, R2, and R3 are the same fluoroalkyl-substituted phenyl group. The method further includes forming the alcohol ethoxylate surfactant or lubricant having a number average molecular weight of greater than the number average molecular weight of the low molecular weight initiator in the presence of the Lewis acid catalyst.
    Type: Application
    Filed: September 14, 2018
    Publication date: June 25, 2020
    Inventors: Arjun Raghuraman, William H. Heath, Bruce D. Hook, Wanglin Yu, Sukrit Mukhopadhyay, Heather A. Spinney, David R. Wilson, Justin M. Notestein, SonBinh T. Nguyen
  • Publication number: 20200185604
    Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or a layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R
    Type: Application
    Filed: October 20, 2017
    Publication date: June 11, 2020
    Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
  • Publication number: 20200052218
    Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer, comprising one or more triaryl aminium radical cations having the structure (S1).
    Type: Application
    Filed: June 26, 2017
    Publication date: February 13, 2020
    Inventors: Anatoliy N. SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P. SPENCER, John W. KRAMER, David D. DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
  • Publication number: 20190334106
    Abstract: The present invention provides a quantum dot light emitting diode comprising i) an emitting layer of at least one semiconductor nanoparticle made from semiconductor materials selected from the group consisting of Group II-VI compounds, Group II-V compounds, Group III-VI compounds, Group III-V compounds, Group IV-VI compounds, Group I-III-VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, or any combination thereof; and ii) a polymer for hole injection or hole transport layer; and the polymer comprises, as polymerized units, at least one or more monomers having a first monomer structure comprising a) a polymerizable group, b) an electroactive group with formula NAr1Ar2Ar3 wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents, and (c) a linker group connecting the polymerizable group and the electroactive group.
    Type: Application
    Filed: June 26, 2017
    Publication date: October 31, 2019
    Inventors: Anatoliy N SOKOLOV, Brian GOODFELLOW, Robert David GRIGG, Liam P SPENCER, John W KRAMER, David D DEVORE, Sukrit MUKHOPADHYAY, Peter TREFONAS, III
  • Patent number: 10454036
    Abstract: The present invention relates to a polymeric charge transfer layer comprising a polymer and a p-dopant. The polymer comprises as polymerized units, Monomer A, Monomer B, and Monomer C crosslinking agent. The present invention further relates to an organic electronic device, especially an organic light emitting device containing the polymeric charge transfer layer.
    Type: Grant
    Filed: January 8, 2015
    Date of Patent: October 22, 2019
    Assignees: Dow Global Technologies LLC, Rohm and Haas Electronic Materials Korea Ltd., Rohm and Haas Electronic Materials LLC
    Inventors: Liam P. Spencer, Hong-Yeop Na, Yoo-Jin Doh, Chun Liu, Minrong Zhu, Jichang Feng, Zhengming Tang, Shaoguang Feng, Kenneth L. Kearns, Jr., Timothy De Vries, Sukrit Mukhopadhyay, John W. Kramer, Peter Trefonas, III, David D. Devore, William H. H. Woodward
  • Publication number: 20190252618
    Abstract: Provided is an organic light-emitting diode comprising a substrate, an anode layer, optionally one or more hole injection layers, one or more hole transport layers, optionally one or more electron blocking layers, an emitting layer, optionally one or more hole blocking layers, optionally one or more electron transport layers, an electron injection layer, and a cathode, wherein either the hole injection layer, or the hole transport layer, or both of the hole injection layer and the hole transport layer, or layer that functions as both a hole injection layer and a hole transport layer, comprises a polymer that comprises one or more triaryl aminium radical cations having the structure (S1) wherein each of R11, R12, R13, R14, R15, R21, R22, R23, R24, R25, R31, R32, R33, R34, and R35 is independently selected from the group consisting of hydrogen, deuterium halogens, amine groups, hydroxyl groups, sulfonate groups, nitro groups, and organic groups, wherein two or more of R11, R12, R13, R14, R15, R21, R22, R23, R24
    Type: Application
    Filed: October 20, 2017
    Publication date: August 15, 2019
    Inventors: Robert David Grigg, Liam P. Spencer, John W. Kramer, David D. Devore, Brian Goodfellow, Chun Liu, Sukrit Mukhopadhyay, Thomas H. Peterson, William H. H. Woodward, Anatoliy N. Sokolov
  • Publication number: 20190200595
    Abstract: A device, system, and method of controlling pests are disclosed. A pest control device includes a sensor having a sensor cell and a controller. A surface of the sensor cell is coated with an agent that reacts with a targeted biochemical analyte secreted by pests. The controller is coupled to the sensor and is configured to receive sensor data from the sensor cell indicative of a rate of change in sensor mass detected on the surface of the sensor cell, determine whether the rate of change in the sensor mass based on the received sensor data exceeds a predefined threshold rate, and transmit a pest detection alert notification to a server in response to a determination that the rate of change exceeds the predetermined threshold rate.
    Type: Application
    Filed: March 7, 2019
    Publication date: July 4, 2019
    Inventors: Mark W. BEACH, Audrey N. SOUKHOJAK, Neil A. SPOMER, Shane L. MANGOLD, Ravi B. SHANKAR, Sukrit MUKHOPADHYAY, Jeremy Chris P. REYES, Bruce A. JACOBS, William L. WINNIFORD, Ronda L. HAMM, Phillip J. HOWARD, Andrew J. PASZTOR, Jr., Mary D. EVENSON, Thomas G. PATTERSON, Natalie C. GIAMPIETRO
  • Publication number: 20190202975
    Abstract: A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer resin having Mw at least 3,000 and having arylmethoxy linkages; (b) an acid catalyst which is an organic Bronsted acid with pKa?4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF3, (ii) BF4?, (iii) PF6?, (iv) SbF6?, (v) AsF6? or (vi) ClO4?; or a thermal acid generator.
    Type: Application
    Filed: June 28, 2016
    Publication date: July 4, 2019
    Inventors: Chun LIU, Robert David GRIGG, Sukrit MUKHOPADHYAY, Matthew S. REMY, Liam P. SPENCER, Minrong ZHU, Yang LI, Shaoguang FENG, Kenneth L. KEARNS, Bruce M. BELL, Anthony P. GIES, Peter TREFONAS, David D. DEVORE, Emad AQAD, Ashley INMAN
  • Publication number: 20190207115
    Abstract: A polymer which has Mn at least 4,000 and comprises polymerized units of a compound of formula NAr1A2A3, wherein Ar1, Ar2 and Ar3 independently are C6-C40 aromatic substituents; Ar1, Ar2 and Ar3 collectively contain no more than one nitrogen atom and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring.
    Type: Application
    Filed: June 28, 2016
    Publication date: July 4, 2019
    Inventors: Robert David GRIGG, Liam P. Spencer, John W. Kramer, Chun Liu, David D. Devore, Shaoguang Feng, Jichang Feng, Minrong Zhu, Yang Li, Sukrit Mukhopadhyay, Anatoliy N. Sokolov, Matthew S. Remy, Peter Trefonas, Bethany Neilson
  • Publication number: 20190198765
    Abstract: A single liquid phase formulation useful for producing an organic charge transporting film. The formulation contains: (a) a polymer having Mn at least 4,000 and comprising polymerized units of a compound of formula NAr1Ar2Ar3, wherein Ar1, Ar2 and Ar3 independently are C6-C50 aromatic substituents and at least one of Ar1, Ar2 and Ar3 contains a vinyl group attached to an aromatic ring; provided that said compound contains no arylmethoxy linkages; (b) an acid catalyst which is is an organic Bronsted acid with pKa?4; a Lewis acid comprising a positive aromatic ion and an anion which is (i) a tetraaryl borate having the formula (I) wherein R represents zero to five non-hydrogen substituents selected from D, F and CF3, (ii) BF4?, (iii) PF6?, (iv) SbF6?, (v) AsF6? or (vi) ClO4?; or a thermal acid generator.
    Type: Application
    Filed: June 28, 2016
    Publication date: June 27, 2019
    Inventors: David D. DEVORE, Yoo Jin DOH, Shaoguang FENG, David D. GRIGG, Yang LI, Chun LIU, Sukrit MUKHOPADHYAY, Hong-Yeop NA, Matthew S. REMY, Liam P. SPENCER, Anatoliy N. SOKOLOV, Peter TREFONAS, III, Minrong ZHU, Ashely INMAN, John W. KRAMER