Patents by Inventor Sumio Iijima

Sumio Iijima has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220267152
    Abstract: The object of the present invention is to provide a separation method and a separation apparatus for carbon nanotubes capable of separating a mixture of carbon nanotubes in a highly efficient, inexpensive and simple manner.
    Type: Application
    Filed: July 20, 2020
    Publication date: August 25, 2022
    Applicants: NEC Corporation, Meijo University
    Inventors: Ryota YUGE, Sumio IIJIMA
  • Patent number: 9399579
    Abstract: A substance-encapsulating carbon nanohorn aggregate which has improved chemical stability by isolating the encapsulated substance from outside and which is useful as a targeting material which can be led from the outside of the body or as a contrast medium by holding the encapsulated substance in an aggregated form, and a process for producing the same are provided. The substance-encapsulating carbon nanohorn aggregate is characterized in that the encapsulated substance is aggregated in a central part of the carbon nanohorn aggregate or a neighborhood thereof with being isolated from outside. The process includes aggregating a substance to be encapsulated in a central part or a neighborhood thereof by a heat treatment.
    Type: Grant
    Filed: June 16, 2008
    Date of Patent: July 26, 2016
    Assignee: NEC CORPORATION
    Inventors: Ryota Yuge, Masako Yudasaka, Toshinari Ichihashi, Sumio Iijima
  • Patent number: 9156699
    Abstract: A technique for forming graphene which solves problems involved in formation of graphene by a thermal CVD method and a resin carbonization method that a high temperature is used and the treatment time is long and can form graphene at a lower temperature in a shorter time is provided. The above problems are solved by performing hydrogen plasma treatment on a copper foil substrate having an organic substance applied thereon by use of a surface wave microwave plasma treatment device and forming graphene on the copper foil substrate by the hydrogen plasma treatment.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: October 13, 2015
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takatoshi Yamada, Jaeho Kim, Masatou Ishihara, Yoshinori Koga, Masataka Hasegawa, Sumio Iijima
  • Patent number: 9074278
    Abstract: Small crystal size is the issue of a conventional method for formation of a film of graphene by a thermal CVD technique using a copper foil as a substrate. A carbon film laminate is described in which graphene having a larger crystal size is formed. The carbon film laminate is configured to include a sapphire single crystal having a surface composed of terrace surfaces which are flat at the atomic level, and atomic-layer steps, a copper single crystal thin film formed by epitaxial growth on the substrate, and graphene deposited on the copper single crystal thin film, and thus enabling formation of graphene having a large crystal size.
    Type: Grant
    Filed: February 25, 2011
    Date of Patent: July 7, 2015
    Assignee: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Masataka Hasegawa, Masatou Ishihara, Yoshinori Koga, Jaeho Kim, Kazuo Tsugawa, Sumio Iijima
  • Patent number: 8882970
    Abstract: An apparatus for manufacturing carbon nanohorns includes a production chamber configured to irradiate a solid carbon material with a laser beam to produce a product containing carbon nanohorns; and a separation mechanism configured to separate the product produced in the production chamber into a lightweight component and a heavyweight component. The heavyweight component includes carbon nanohorn aggregate with high purity, and high-purity carbon nanotubes can be obtained by collecting the heavyweight component.
    Type: Grant
    Filed: April 19, 2007
    Date of Patent: November 11, 2014
    Assignees: NEC Corporation, Fuchita Nanotechnology Ltd.
    Inventors: Takeshi Azami, Daisuke Kasuya, Tsutomu Yoshitake, Yoshimi Kubo, Masako Yudasaka, Sumio Iijima, Eiji Fuchita
  • Patent number: 8835006
    Abstract: A carbon nanohorn carried material for producing a carbon nanotube by a chemical vapor deposition (CVD) method, including a catalytic metal or a compound thereof contained inside carbon nanohorns or supported on exterior walls of the carbon nanohorns is provided. A carbon nanotube is produced by a CVD reaction using the carbon nanohorn carried material. A novel technical means for producing a carbon nanotube which does not use any noncarbon type carrier, can easily collect and purify the carbon nanotube and can control the length of the carbon nanotube can be provided.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: September 16, 2014
    Assignee: NEC Corporation
    Inventors: Sumio Iijima, Masako Yudasaka, Jin Miyawaki
  • Publication number: 20130327981
    Abstract: A technique for forming graphene which solves problems involved in formation of graphene by a thermal CVD method and a resin carbonization method that a high temperature is used and the treatment time is long and can form graphene at a lower temperature in a shorter time is provided. The above problems are solved by performing hydrogen plasma treatment on a copper foil substrate having an organic substance applied thereon by use of a surface wave microwave plasma treatment device and forming graphene on the copper foil substrate by the hydrogen plasma treatment.
    Type: Application
    Filed: August 9, 2013
    Publication date: December 12, 2013
    Applicant: NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY
    Inventors: Takatoshi YAMADA, Jaeho KIM, Masatou ISHIHARA, Yoshinori KOGA, Masataka HASEGAWA, Sumio IIJIMA
  • Patent number: 8501276
    Abstract: Disclosed is a carbon film which has optical characteristics of retaining a high transparency and being high in refractive index and low in double refractivity, is excellent in electric insulating performance, can be applied to various base materials with good adhesiveness, and can be formed at low temperature. Also disclosed is a laminate including a carbon film and a method for producing the laminate.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: August 6, 2013
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Yoshinori Koga, Masataka Hasegawa, Sumio Iijima, Kazuo Tsugawa, Masatou Ishihara
  • Publication number: 20130052121
    Abstract: An object of the present invention is to solve a problem such as a small crystal size, which is the issue of a conventional method for formation of a film of graphene by a thermal CVD technique using a copper foil as a substrate, and thus providing a carbon film laminate in which graphene having a larger crystal size is formed. The carbon film laminate is configured to include a sapphire (0001) single crystal having a surface composed of terrace surfaces which are flat at the atomic level, and atomic-layer steps, a copper (111) single crystal thin film formed by epitaxial growth on the substrate and graphene deposited on the copper (111) single crystal thin film, and thus enabling formation of graphene having a large crystal size.
    Type: Application
    Filed: February 25, 2011
    Publication date: February 28, 2013
    Inventors: Masataka Hasegawa, Masatou Ishihara, Yoshinori Koga, Jaeho Kim, Kazuo Tsugawa, Sumio Iijima
  • Publication number: 20130052119
    Abstract: An object of the present invention is to solve problems such as high temperature processing and long processing time, which are issues of formation of a graphene film by thermal CVD, thereby providing a technique of forming a transparent conductive carbon film using a crystalline carbon film formed at lower temperature within a short time using a graphene film, and the method of the present invention is characterized by setting the temperature of a base material to 500° C. or lower and the pressure to 50 Pa or less, and also depositing a transparent conductive carbon film on a surface of a base material by a microwave surface-wave plasma CVD method in a gas atmosphere in which an oxidation inhibitor as an additive gas for suppressing oxidation of the surface of the base material is added to a carbon-containing gas or a mixed a carbon-containing gas and an inert gas.
    Type: Application
    Filed: March 17, 2011
    Publication date: February 28, 2013
    Inventors: Jaeho Kim, Masatou Ishihara, Yoshinori Koga, Kazuo Tsugawa, Masataka Hasegawa, Sumio Iijima, Takatoshi Yamada
  • Patent number: 8329135
    Abstract: An aligned carbon nanotube bulk structure in which various properties such as density and hardness are controlled depending on the place is provided. An aligned carbon nanotube bulk structure having different density portions is an aligned carbon nanotube bulk structure provided with a high-density portion applied with a density-increasing treatment and an low-density portion and having a plurality of carbon nanotubes (CNT) aligned in a predetermined direction, in which the structure has 1:3 or more of the degree of anisotropy in the alignment direction and in the direction vertical to the alignment direction and, in the (002) peak of the X-ray diffraction data in the high density region, the intensity of X-ray incident along the orientation direction is higher than that of the X-ray intensity from the direction vertical to the alignment direction, and the degree of alignment is defined by specific conditions.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: December 11, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Hata, Don N. Futaba, Motoo Yumura, Sumio Iijima
  • Patent number: 8318308
    Abstract: This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 ?m, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: November 27, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Hata, Sumio Iijima, Motoo Yumura, Don N. Futaba
  • Publication number: 20120270051
    Abstract: A carbon nanohorn carried material for producing a carbon nanotube by a chemical vapor deposition (CVD) method, including a catalytic metal or a compound thereof contained inside carbon nanohorns or supported on exterior walls of the carbon nanohorns is provided. A carbon nanotube is produced by a CVD reaction using the carbon nanohorn carried material. A novel technical means for producing a carbon nanotube which does not use any noncarbon type carrier, can easily collect and purify the carbon nanotube and can control the length of the carbon nanotube can be provided.
    Type: Application
    Filed: May 31, 2012
    Publication date: October 25, 2012
    Inventors: Sumio IIJIMA, Masako Yudasaka, Jin Miyawaki
  • Publication number: 20120199553
    Abstract: Problem To provide a carbon film and a laminate having optical characteristics of retaining high transparency, having high refraction index and less double refractivity, being excellent in electric insulating property, being capable of being coated at good adhesion to various substrates, and being capable of being formed at a low temperature, and applications thereof. Means for Solving the Problem The invention relates to a carbon film which has an approximate spectrum curve obtainable by superimposing, on a peak fitting curve A at a Bragg's angle (2?±0.3°) of 43.9°, a peak fitting curve B at 41.7° and a base line in an X-ray diffraction spectrum by a CuKa1 ray, and has a film thickness of from 2 mm to 100 ?m. The intensity of the fitting curve B relative to the intensity of the fitting curve A is preferably from 5 to 90% in the approximated spectrum described above.
    Type: Application
    Filed: July 15, 2011
    Publication date: August 9, 2012
    Inventors: Yoshinori Koga, Masataka Hasegawa, Sumio Iijima, Kazuo Tsugawa, Masatou Ishihara
  • Patent number: 8202817
    Abstract: A nanocarbon aggregate including a graphite aggregate including a graphene sheet having a petal shape and a nanohorn. The petal-shaped graphite aggregate achieves a reduction in the particulate size and a higher dispersibility by allowing the edge of the petal shape to locally absorb a metal, a metal complex and a metal oxide. The nanocarbon aggregate is used for a catalyst support.
    Type: Grant
    Filed: January 29, 2008
    Date of Patent: June 19, 2012
    Assignee: NEC Corporation
    Inventors: Ryota Yuge, Masako Yudasaka, Sumio Iijima
  • Patent number: 8202505
    Abstract: An aligned carbon nanotube bulk structure capable of attaining high density and high hardness not found so far. The aligned carbon nanotube bulk structure has a plurality of carbon nanotubes (CNTs) applied with a density-increasing treatment, and having alignment in a predetermined direction, the structure has a degree of anisotropy of 1:3 or more between the direction of alignment and the direction vertical to the direction of alignment, and the intensity by irradiating X-rays along the direction of alignment is higher than the intensity by irradiating X-rays from the direction vertical to the direction of alignment at a (002) peak in X-ray diffraction data, and the degree of alignment thereof satisfies predetermined conditions.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: June 19, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Hata, Don N. Futaba, Motoo Yumura, Sumio Iijima
  • Publication number: 20120122020
    Abstract: This invention provides an aligned single-layer carbon nanotube bulk structure, which comprises an assembly of a plurality of aligned single-layer carbon nanotube and has a height of not less than 10 ?m, and an aligned single-layer carbon nanotube bulk structure which comprises an assembly of a plurality of aligned single-layer carbon nanotubes and has been patterned in a predetermined form. This structure is produced by chemical vapor deposition (CVD) of carbon nanotubes in the presence of a metal catalyst in a reaction atmosphere with an oxidizing agent, preferably water, added thereto. An aligned single-layer carbon nanotube bulk structure, which has realized high purify and significantly large scaled length or height, its production process and apparatus, and its applied products are provided.
    Type: Application
    Filed: December 22, 2011
    Publication date: May 17, 2012
    Inventors: Kenji HATA, Sumio IIJIMA, Motoo YUMURA, Don N. FUTABA
  • Patent number: 8178203
    Abstract: This invention provides an aligned single-walled CNT aggregate comprising a substrate, fine particles of iron catalyst with a density of 1×1011 to 1×1014/cm2 disposed on an alumina co-catalyst above the substrate, and a plurality of single-walled CNTs grown from the fine particles of the iron catalyst, in which the plurality of single-walled CNTs have a specific surface area of 600 m2/g to 2600 m2/g, and a weight density from 0.002 g/cm3 to 0.2 g/cm3, and the alignment degree which satisfies a few of specific conditions. This invention also provides a bulk aligned single-walled carbon nanotube aggregate and a powdered aligned single-walled carbon nanotube aggregate.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: May 15, 2012
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Kenji Hata, Sumio Iijima, Motoo Yumura, Don N. Futaba
  • Publication number: 20120058053
    Abstract: A contrast agent characterized in that each of carbon nanohorns forming a carbon nanohorn aggregate has an opening at the side wall or tip, wherein a metal M (at least one metal selected from among paramagnetic metals, ferromagnetic metals, and superparamagnetic metals) or a compound of the metal M is incorporated in or dispersed on each of the carbon nanohorns. A contrast agent characterized in that it contains a Gd oxide. There is provided a contrast agent, which can be mass-produced easily, and satisfies the requirement of low toxicity and enables microscopic diagnoses when used for MRI. A contrast agent characterized in that is contains a carbon nanohorn aggregate.
    Type: Application
    Filed: November 14, 2011
    Publication date: March 8, 2012
    Inventors: Sumio Iijima, Jin Miyawaki, Masako Yudasaka, Eiichi Nakamura, Hiroyuki Isobe, Hideki Yorimitsu, Hideto Imai
  • Patent number: 8119094
    Abstract: There is provided a fluorine storage material comprising a novel fluorinated carbon nanohorn, which stores a large amount of fluorine per its unit mass, withstand repeated use for fluorine storage, and enables a high purity fluorine gas to be taken out by a safe and efficient method, and also there is provided a method of taking out a fluorine gas by applying heat to the fluorine storage material or placing the fluorine storage material in a pressure-reduced atmosphere.
    Type: Grant
    Filed: December 26, 2006
    Date of Patent: February 21, 2012
    Assignees: Daikin Industries, Ltd., National University Corporation Shinshu University, NEC Corporation
    Inventors: Hidekazu Touhara, Yoshio Nojima, Tomohiro Isogai, Masako Yudasaka, Sumio Iijima