Patents by Inventor Sunfei Fang

Sunfei Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7816219
    Abstract: A semiconductor structure and method for forming the same. First, a semiconductor structure is provided, including (a) a semiconductor layer including (i) a channel region and (ii) first and second source/drain (S/D) extension regions, and (iii) first and second S/D regions, (b) a gate dielectric region in direction physical contact with the channel region via a first interfacing surface that defines a reference direction essentially perpendicular to the first interfacing surface, and (c) a gate region in direct physical contact with the gate dielectric region, wherein the gate dielectric region is sandwiched between and electrically insulates the gate region and the channel region. Then, (i) a first shallow contact region is formed in direct physical contact with the first S/D extension region, and (ii) a first deep contact region is formed in direct physical contact with the first S/D region and the first shallow contact region.
    Type: Grant
    Filed: September 5, 2007
    Date of Patent: October 19, 2010
    Assignee: International Business Machines Corporation
    Inventors: Xiangdong Chen, Sunfei Fang, Zhijiong Luo, Haining Yang, Huilong Zhu
  • Patent number: 7785999
    Abstract: An advanced gate structure that includes a fully silicided metal gate and silicided source and drain regions in which the fully silicided metal gate has a thickness that is greater than the thickness of the silicided source/drain regions is provided. A method of forming the advanced gate structure is also provided in which the silicided source and drain regions are formed prior to formation of the silicided metal gate region.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chester T. Dziobkowski, Sunfei Fang, Evgeni Gousev, Rajarao Jammy, Vijay Narayanan, Vamsi Paruchuri, Ghavam G. Shahidi, Michelle L. Steen, Clement H. Wann
  • Patent number: 7785950
    Abstract: A method for providing a dual stress memory technique in a semiconductor device including an nFET and a PFET and a related structure are disclosed. One embodiment of the method includes forming a tensile stress layer over the nFET and a compressive stress layer over the pFET, annealing to memorize stress in the semiconductor device and removing the stress layers. The compressive stress layer may include a high stress silicon nitride deposited using a high density plasma (HDP) deposition method. The annealing step may include using a temperature of approximately 400-1200° C. The high stress compressive silicon nitride and/or the anneal temperatures ensure that the compressive stress memorization is retained in the pFET.
    Type: Grant
    Filed: November 10, 2005
    Date of Patent: August 31, 2010
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd, Chartered Semiconductor Manufacturing Ltd
    Inventors: Sunfei Fang, Jun Jung Kim, Zhijiong Luo, Hung Y. Ng, Nivo Rovedo, Young Way Teh
  • Publication number: 20100029072
    Abstract: Methods of forming integrated circuit devices include forming an electrically insulating layer having a contact hole therein, on a substrate, and then depositing an electrically insulating liner onto a sidewall of the contact hole using an atomic layer deposition (ALD) technique. This electrically insulating liner, which may include gelatinous silica or silicon dioxide, for example, may be deposited to a thickness in a range from 40 ? to 100 ?. A portion of the electrically insulating liner is then removed from a bottom of the contact hole and a barrier metal layer is then formed on the electrically insulating liner and on a bottom of the contact hole. The step of forming the barrier metal layer may be followed by filling the contact hole with a metal interconnect.
    Type: Application
    Filed: July 23, 2009
    Publication date: February 4, 2010
    Inventors: Jae-Eon Park, Jun-Keun Kwak, Jin-Woo Choi, Sunfei Fang, Jiang Yan
  • Publication number: 20090309228
    Abstract: The present invention relates to a method for forming self-aligned metal silicide contacts over at least two silicon-containing semiconductor regions that are spaced apart from each other by an exposed dielectric region. Preferably, each of the self-aligned metal silicide contacts so formed comprises at least nickel silicide and platinum silicide with a substantially smooth surface, and the exposed dielectric region is essentially free of metal and metal silicide. More preferably, the method comprises the steps of nickel or nickel alloy deposition, low-temperature annealing, nickel etching, high-temperature annealing, and aqua regia etching.
    Type: Application
    Filed: August 12, 2009
    Publication date: December 17, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sunfei Fang, Randolph F. Knarr, Mahadevaiyer Krishnan, Christian Lavoie, Renee T. Mo, Balasubramanian Pranatharthiharan, Jay W. Strane
  • Patent number: 7618891
    Abstract: The present invention relates to a method for forming self-aligned metal silicide contacts over at least two silicon-containing semiconductor regions that are spaced apart from each other by an exposed dielectric region. Preferably, each of the self-aligned metal silicide contacts so formed comprises at least nickel silicide and platinum silicide with a substantially smooth surface, and the exposed dielectric region is essentially free of metal and metal silicide. More preferably, the method comprises the steps of nickel or nickel alloy deposition, low-temperature annealing, nickel etching, high-temperature annealing, and aqua regia etching.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: November 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Sunfei Fang, Randolph F. Knarr, Mahadevaiyer Krishnan, Christian Lavoie, Renee T. Mo, Balasubramanian Pranatharthiharan, Jay W. Strane
  • Patent number: 7598572
    Abstract: An integrated circuit device having an increased source/drain contact area by a formed silicided polysilicon spacer. The polysilicon sidewall spacer is formed having a height less than seventy percent of said gate conductor height, and having a continuous surface silicide layer over the deep source and drain regions. The contact area is enhanced by the silicided polysilicon spacer.
    Type: Grant
    Filed: October 25, 2006
    Date of Patent: October 6, 2009
    Assignees: International Business Machines Corporation, Samsung Electronic Co., Ltd (Corporation), Chartered Semiconductor Manufacturing Ltd (Corporation)
    Inventors: Thomas W. Dyer, Sunfei Fang, Ja-Hum Ku, Yong Meng Lee
  • Patent number: 7585773
    Abstract: A semiconductor device is provided wherein at least one offset spacer is reduced and a non-conformal stress liner is thereafter deposited. By depositing the non-conformal stress liner in accordance with the present invention in close stress proximity to the FET, the carrier mobility and the performance of said device is significantly enhanced. The present invention is her directed to a method of fabricating said semiconductor device.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: September 8, 2009
    Assignees: International Business Machines Corporation, Samsung Electronics Co., Ltd.
    Inventors: Sunfei Fang, Jun Jung Kim, Thomas Dyer
  • Patent number: 7582516
    Abstract: The present invention relates to a semiconductor substrate comprising at least first and second device regions. The first device region has a substantially planar surface oriented along one of a first set of equivalent crystal planes, and the second device region contains a protruding semiconductor structure having multiple intercepting surfaces oriented along a second, different set of equivalent crystal planes. A semiconductor device structure can be formed using such a semiconductor substrate. Specifically, a first field effect transistor (FET) can be formed at the first device region, which comprises a channel that extends along the substantially planar surface of the first device region. A second, complementary FET can be formed at the second device region, while the second, complementary FET comprises a channel that extends along the multiple intercepting surfaces of the protruding semiconductor structure at the second device region.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: September 1, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Sunfei Fang, Judson R. Holt
  • Patent number: 7541288
    Abstract: Methods of forming integrated circuit devices include depositing an electrically insulating layer onto an integrated circuit substrate having integrated circuit structures thereon. This deposition step results in the formation of an electrically insulating layer having an undulating surface profile, which includes at least one peak and at least one valley adjacent to the at least one peak. A non-uniform thickening step is then performed. This non-uniform thickening step includes thickening a portion of the electrically insulating layer by redepositing portions of the electrically insulating layer from the least one peak to the at least one valley. This redeposition occurs using a sputter deposition technique that utilizes the electrically insulating layer as a sputter target.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: June 2, 2009
    Assignees: Samsung Electronics Co., Ltd., International Business Machines Corporation, Infineon Technologies AG, Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun-jung Kim, Ja-hum Ku, Jae-eon Park, Sunfei Fang, Alois Gutmann, O-sung Kwon, Johnny Widodo, Dae-won Yang
  • Publication number: 20090101979
    Abstract: Methods of forming integrated circuit devices include forming a field effect transistor having a gate electrode, a sacrificial spacer on a sidewall of the gate electrode and silicided source/drain regions. The sacrificial spacer is used as an implantation mask when forming highly doped portions of the source/drain regions. The sacrificial spacer is then removed from the sidewall of the gate electrode. A stress-inducing electrically insulating layer, which is configured to induce a net tensile stress (for NMOS transistors) or compressive stress (for PMOS transistors) in a channel region of the field effect transistor, is then formed on the sidewall of the gate electrode.
    Type: Application
    Filed: October 17, 2007
    Publication date: April 23, 2009
    Inventors: Jun-jung Kim, Sang-jine Park, Min-ho Lee, Thomas W. Dyer, Sunfei Fang, O-sung Kwon, Johnny Widodo
  • Patent number: 7517767
    Abstract: Embodiments of the present invention provide a method of forming a conductive stud contacting a semiconductor device. The method includes forming a protective layer covering the semiconductor device; selectively etching an opening down through the protective layer reaching a contact area of the semiconductor device, the opening being away from a protected area of the semiconductor device; and filling the opening with a conductive material to form the conductive stud. One embodiment may further include forming a dielectric liner directly on top of the semiconductor device, and forming the protective layer on top of the dielectric liner. Embodiments of the present invention also provide a semiconductor device made thereof.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: April 14, 2009
    Assignees: International Business Machines Corporation, Infineon AG
    Inventors: Thomas W. Dyer, Sunfei Fang, Jiang Yan
  • Patent number: 7504309
    Abstract: A method forms a gate conductor over a substrate, and simultaneously forms spacers on sides of the gate conductor and a gate cap on the top of the gate conductor. Isolation regions are formed in the substrate and the method implants an impurity into exposed regions of the substrate not protected by the gate conductor and the spacers to form source and drain regions. The method deposits a mask over the gate conductor, the spacers, and the source and drain regions. The mask is recessed to a level below a top of the gate conductor but above the source and drain regions, such that the spacers are exposed and the source and drain regions are protected by the mask. With the mask in place, the method then safely removes the spacers and the gate cap, without damaging the source/drain regions or the isolation regions (which are protected by the mask). Next, the method removes the mask and then forms silicide regions on the gate conductor and the source and drain regions.
    Type: Grant
    Filed: October 12, 2006
    Date of Patent: March 17, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Sunfei Fang, Jiang Yan, Jun Jung Kim, Yaocheng Liu, Huilong Zhu
  • Patent number: 7488660
    Abstract: A semiconductor device comprises a gate electrode stack having sidewalls and a top surface with a gate dielectric layer and the gate electrode, and LDD/LDS regions in the substrate aligned with the stack. Conformal L-shaped etch-stop layers with a thickness from about 50 ? to about 200 ? are formed with a vertical leg on the sidewalls of the stack and a horizontal leg reaching over the LDD/LDS regions next to the stack. RSD regions are formed in contact with the substrate aside from the etch-stop layers. The RSD regions cover the horizontal leg of the etch-stop layer and cover at least a portion of the vertical leg of the etch-stop layer on the sidewall of the gate electrode.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Thomas W. Dyer, Sunfei Fang
  • Patent number: 7482215
    Abstract: A method of forming a dual segment liner covering a first and a second set of semiconductor devices is provided. The method includes forming a first liner and a first protective layer on top thereof, the first liner covering the first set of semiconductor devices; forming a second liner, the second liner having a first section covering the first protective layer, a transitional section, and a second section covering the second set of semiconductor devices, the second section being self-aligned to the first liner via the transitional section; forming a second protective layer on top of the second section of the second liner; removing the first section and at least part of the transitional section of the second liner; and obtaining the dual segment liner including the first liner, the transitional section and the second section of the second liner. A semiconductor structure with a self-aligned dual segment liner formed in accordance with one embodiment of the invention is also provided.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: January 27, 2009
    Assignees: International Business Machines Corporation, Infineon Technologies AG
    Inventors: Thomas W. Dyer, Sunfei Fang, Jiang Yan
  • Publication number: 20090017586
    Abstract: A method for fabricating a field effect device, such as a field effect transistor, uses a first metal-semiconductor layer, such as a first metal-silicide layer, adjacent a channel in the field effect device. The first metal-semiconductor layer has a first volume. The first metal-semiconductor layer is capped with a capping layer and processed to form a second metal-semiconductor layer that has a second volume different than the first volume. Due to the presence of the capping layer, the difference in volume between the second volume and the first volume introduces a stress into the channel of the field effect device.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Sunfei Fang, Zhijiong Luo
  • Publication number: 20090014807
    Abstract: Dual stress liners for CMOS applications are provided. The dual stress liners can be formed from silicon nitride having a first portion for inducing a first stress and a second portion for inducing a second stress. An interface between the first and second stress portions is self-aligned and co-planar. To produce a co-planar self-aligned interface, polishing, for example, mechanical chemical polishing is used.
    Type: Application
    Filed: July 13, 2007
    Publication date: January 15, 2009
    Applicants: Chartered Semiconductor Manufacturing, Ltd., Samsung Electronics Co., Ltd, International Business Machines Corporation, Infineon Technologies AG
    Inventors: Teck Jung TANG, Dae Kwon Kang, Sunfei Fang, Tae Hoon Lee, Scott D. Allen, Fang Chen, Frank Huebinger, Jun Jung Kim, Jae Eun Park
  • Publication number: 20080246056
    Abstract: Methods of forming a suicide in an embedded silicon germanium (eSiGe) source/drain region using a suicide prevention spacer overlapping an interface between the eSiGe and the silicon channel, and a related PFET with an eSiGe source/drain region and a compressive stress liner in close proximity to a silicon channel thereof, are disclosed. In one embodiment, a method includes providing a gate having a nitrogen-containing spacer adjacent thereto and an epitaxially grown silicon germanium (eSiGe) region adjacent to a silicon channel of the gate; removing the nitrogen-containing spacer that does not extend over the interface between the eSiGe source/drain region and the silicon channel; forming a single silicide prevention spacer about the gate, the single silicide prevention spacer overlapping the interface; and forming the silicide in the eSiGe source/drain region using the single silicide prevention spacer to prevent the silicide from forming in at least an extension area of the silicon channel.
    Type: Application
    Filed: April 9, 2007
    Publication date: October 9, 2008
    Inventors: Victor W. C. Chan, Thomas W. Dyer, Sunfei Fang, Jinghong Li, Teck J. Tang, Henry K. Utomo, Jiang Yan
  • Publication number: 20080220581
    Abstract: An opto-thermal annealing method for forming a field effect transistor uses a reflective metal gate so that electrical properties of the metal gate and also interface between the metal gate and a gate dielectric are not compromised when opto-thermal annealing a source/drain region adjacent the metal gate. Another opto-thermal annealing method may be used for simultaneously opto-thermally annealing: (1) a silicon layer and a silicide forming metal layer to form a fully silicided gate; and (2) a source/drain region to form an annealed source/drain region. An additional opto-thermal annealing method may use a thermal insulator layer in conjunction with a thermal absorber layer to selectively opto-thermally anneal a silicon layer and a silicide forming metal layer to form a fully silicide gate.
    Type: Application
    Filed: May 14, 2008
    Publication date: September 11, 2008
    Applicant: International Business Machines Corporation
    Inventors: Scott D. Allen, Cyril Cabral, Kevin K. Dezfulian, Sunfei Fang, Brian J. Greene, Rajarao Jammy, Christian Lavoie, Zhijiong Luo, Hung Ng, Chun-Yung Sung, Clement H. Wann, Huilong Zhu
  • Publication number: 20080220584
    Abstract: Methods of forming integrated circuit devices include depositing an electrically insulating layer onto an integrated circuit substrate having integrated circuit structures thereon. This deposition step results in the formation of an electrically insulating layer having an undulating surface profile, which includes at least one peak and at least on valley adjacent to the at least one peak. A non-uniform thickening step is then performed. This non-uniform thickening step includes thickening a portion of the electrically insulating layer by redepositing portions of the electrically insulating layer from the least one peak to the at least one valley. This redeposition occurs using a sputter deposition technique that utilizes the electrically insulating layer as a sputter target.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Inventors: Jun-jung Kim, Ja-hum Ku, Jae-eon Park, Sunfei Fang, Alois Gutmann, O-sung Kwon, Johnny Widodo, Dae-won Yang