Patents by Inventor Sung-Ho Jo

Sung-Ho Jo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10046968
    Abstract: A desulfurization system removes sulfur ingredients included in synthetic gas generated from gasification of coal in a high temperature dry state. The system includes a desulfurization reactor, a desulfurization cyclone, and first and second regeneration reactors branched with the desulfurization cyclone. A first oxidizing agent is injected to a first oxidizing agent inlet of the first regeneration reactor, and a second oxidizing agent is injected to a second oxidizing agent inlet of the second regeneration reactor. A controller operates one of the first and second regeneration reactors in a regeneration mode, controlling the other to operate in a desulfurization mode.
    Type: Grant
    Filed: August 10, 2016
    Date of Patent: August 14, 2018
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, Young Cheol Park, Jong-ho Moon, Hyo Jin Lee, Jeom In Baek
  • Patent number: 9963400
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 8, 2018
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Publication number: 20170268768
    Abstract: Disclosed are an apparatus and a method for measuring the height of a solid bed in a high-temperature and high-pressure fluidized bed system, and a fluidized bed system having the solid bed height measuring apparatus. The solid bed height measuring apparatus includes a lower pressure probe mounted at an upper side as high as a first height from a gas distributor of a fluidized bed reactor to measure pressure of the mounted location, and a middle pressure probe mounted at an upper side as high as a second height from the lower probe to measure pressure of the mounted location. An upper pressure probe is mounted at the top of the fluidized bed reactor to measure the inside pressure of the fluidized bed reactor. First and second differential pressure gauges are used for measuring differential pressures.
    Type: Application
    Filed: April 20, 2016
    Publication date: September 21, 2017
    Inventors: Ho-jung RYU, Dong-ho LEE, Gyoung-tae JIN, Do-won SHUN, Chang-keun YI, Jae-hyeon PARK, Dal-hee BAE, Sung-ho JO, Seung-yong LEE, Young Cheol PARK, Jong-ho MOON
  • Patent number: 9725374
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: August 8, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Patent number: 9683737
    Abstract: A chemical looping combustion apparatus for solid fuels using different oxygen carriers is provided. The chemical looping combustion apparatus includes: a solid fuel chemical looping combustor configured to receive solid fuels and to produce carbon dioxide and steam by combustion of the solid fuels; a gaseous fuel chemical looping combustor configured to receive gaseous fuels and to produce carbon dioxide and steam by combustion of the gaseous fuels; and a devolatilization reactor configured to produce solids and gases by devolatilizing the solid fuels, and the solid fuels received by the solid fuel chemical looping combustor and the gaseous fuels received by the gaseous fuel chemical looping combustor are the solids and the gases produced by the devolatilization reactor, respectively. Accordingly, a reaction rate and an amount of oxygen transfer can increase, and necessity for low-priced oxygen carriers and a make-up cost of low-priced oxygen carriers can be reduced.
    Type: Grant
    Filed: July 1, 2014
    Date of Patent: June 20, 2017
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Gyoung-tae Jin, Chang-keun Yi, Do-won Shun, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Dong-ho Lee, Ji-bong Joo
  • Publication number: 20170044014
    Abstract: A desulfurization system removes sulfur ingredients included synthetic gas generated from gasification of coal in a high temperature dry state. The system includes a desulfurization reactor, a desulfurization cyclone, and first and second regeneration reactors branched in the desulfurization cyclone. A first oxidizing agent is injected to a first oxidizing agent inlet of the first regeneration reactor, and a second oxidizing agent is injected to a second oxidizing agent inlet of the second regeneration reactor. A controller operates one of the first and second regeneration reactors in a regeneration mode, controlling the other to operate in a desulfurization mode.
    Type: Application
    Filed: August 10, 2016
    Publication date: February 16, 2017
    Inventors: Ho-jung RYU, Dong-ho LEE, Gyoung-tae JIN, Do-won SHUN, Chang-keun YI, Jae-hyeon PARK, Dal-hee BAE, Sung-ho JO, Seung-yong LEE, Young Cheol PARK, Jong-ho MOON, Hyo Jin Lee, Jeom In Baek
  • Publication number: 20160362348
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: Ho-jung RYU, Dong-ho LEE, Gyoung-tae JIN, Do-won SHUN, Chang-keun YI, Jae-hyeon Park, Dal-hee BAE, Sung-ho JO, Seung-yong LEE, YoungCheol PARK, Jong-ho MOON, Ji-bong JOO
  • Publication number: 20160046540
    Abstract: A system for preventing a catalyst from overheating is provided. The system includes: a first reactor filled with a catalyst at least in part and configured to receive reaction gas and produce product gas; and a second reactor configured to cool a catalyst discharged from the first reactor. The catalyst is circulated between the first reactor and the second reactor by injecting the catalyst cooled in the second reactor into the first rector.
    Type: Application
    Filed: November 13, 2014
    Publication date: February 18, 2016
    Inventors: Ho-jung Ryu, Dong-ho Lee,, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Patent number: 9192904
    Abstract: A fluidized bed reactor is provided. The fluidized bed reactor includes a screw conveyor configured to penetrate through an upper portion of the fluidized bed reactor and to discharge solid particles to an outside from the fluidized bed reactor. The screw conveyor is configured to have an upper end protrude from the upper portion of the fluidized bed reactor and a lower end located at a height equal to or higher than a height of a distributor of the fluidized bed reactor.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: November 24, 2015
    Assignee: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Ho-jung Ryu, Dong-ho Lee, Gyoung-tae Jin, Do-won Shun, Chang-keun Yi, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Ji-bong Joo
  • Publication number: 20150174546
    Abstract: The present invention relates to a fluidized bed reactor capable of varying flow velocity, in which the flow velocity in the fluidized bed reactor varies to maintain the smooth transportation of solid particles while increasing the concentration of a gaseous reactant in relation to the solid particles. The fluidized bed reactor comprises: a lower high-speed unit into which solid particles and fluid particles are introduced; a middle low-speed unit continuously connected to an upper portion of the lower high-speed unit so that the flow velocity therein becomes lower than that in the lower high-speed unit; and an upper high-speed unit continuously connected to an upper portion of the middle low-speed unit so that the flow velocity therein becomes higher than that in the middle low-speed unit.
    Type: Application
    Filed: May 21, 2013
    Publication date: June 25, 2015
    Applicant: KOREA INSTITUTE OF ENERGY RESEARCH
    Inventors: Chang-Keun Yi, Ho-Jung Ryu, Young-Cheol Park, Sung-Ho Jo, Gyoung Tae Jin, Dowon Shun, Dal-Hee Bae, Jaehyeon Park, Seung-Yong Lee, Jong-Ho Moon, Dong-Ho Lee
  • Publication number: 20150010873
    Abstract: A chemical looping combustion apparatus for solid fuels using different oxygen carriers is provided. The chemical looping combustion apparatus includes: a solid fuel chemical looping combustor configured to receive solid fuels and to produce carbon dioxide and steam by combustion of the solid fuels; a gaseous fuel chemical looping combustor configured to receive gaseous fuels and to produce carbon dioxide and steam by combustion of the gaseous fuels; and a devolatilization reactor configured to produce solids and gases by devolatilizing the solid fuels, and the solid fuels received by the solid fuel chemical looping combustor and the gaseous fuels received by the gaseous fuel chemical looping combustor are the solids and the gases produced by the devolatilization reactor, respectively. Accordingly, a reaction rate and an amount of oxygen transfer can increase, and necessity for low-priced oxygen carriers and a make-up cost of low-priced oxygen carriers can be reduced.
    Type: Application
    Filed: July 1, 2014
    Publication date: January 8, 2015
    Inventors: Ho-jung Ryu, Gyoung-tae Jin, Chang-keun Yi, Do-won Shun, Jae-hyeon Park, Dal-hee Bae, Sung-ho Jo, Seung-yong Lee, YoungCheol Park, Jong-ho Moon, Dong-ho Lee, Ji-bong Joo
  • Patent number: 8852329
    Abstract: Disclosed is a dry carbon dioxide capturing device which can improve sorption efficiency by supplying sorbent for absorbing carbon dioxide or exhaust gas containing carbon dioxide to a recovery reactor in multistages at various heights. The dry carbon dioxide (CO2) capturing device with multistage supply structure comprises a recovery reactor 102 to recover CO2 by contacting a solid sorbent with exhaust gas; a recovery cyclone 110 connected to the recovery reactor 102 to discharge a gas while separating the CO2-captured solid sorbent only; a regenerator 114 connected to the recovery cyclone 110 to receive the CO2-captured solid sorbent and separate CO2 captured in the solid sorbent; and a pre-treatment reactor 122 connected to the regenerator 114 for cooling the solid sorbent free from CO2, wherein at least one of the exhaust gas supply line and the sorbent supply line has two or more arranged according to the height of the recovery reactor 102.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: October 7, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Young Cheol Park, Sung-Ho Jo, Gyoung Tae Jin, Dowon Shun, Dal-Hee Bae, Jaehyeon Park, Ho-Jung Ryu, Seung-Yong Lee, Jong-Ho Moon, Dong-Ho Lee
  • Patent number: 8764890
    Abstract: Disclosed is a dry CO2 capturing device using multi sorbents so as to maintain the sorption rate for exhaust gas containing CO2. The dry carbon dioxide (CO2) capturing device comprises at least two dry carbon dioxide (CO2) capturing parts comprising: a first and second recovery reactors 104 and 105 to recover CO2 by contacting a solid sorbent with exhaust gas; a first and second recovery cyclones 106 and 122 connected to the recovery reactors; a first and second regenerators 110 and 126 connected to the recovery cyclones; and a first and second pre-treatment reactors 116 and 132 connected to the regenerators through sorbent supply lines.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: July 1, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Young Cheol Park, Sung-Ho Jo, Gyoung Tae Jin, Dowan Shun, Dal-Hee Bae, Jaehyeon Park, Ho-Jung Ryu, Seung-Yong Lee, Jong-Ho Moon, Dong-Ho Lee
  • Patent number: 8753437
    Abstract: Disclosed is a dry CO2 capturing device with improved energy efficiency, which utilizes a difference in temperature between a regeneration operation of isolating CO2 from an sorbent containing CO2 absorbed therein and a pre-treatment operation of allowing H2O to be adsorbed to CO2. The dry carbon dioxide (CO2) capturing device, includes a recovery reactor for recovering CO2, a recovery cyclone for discharging a gas while separating the CO2-captured solid sorbent only, a regenerator for receiving the CO2-captured solid sorbent and separating CO2 captured in the solid sorbent, and a pre-treatment reactor for cooling the solid sorbent free from CO2, wherein a first heat exchanger is provided between the recovery cyclone and the regenerator to pass the CO2-captured solid sorbent therethrough, and a second heat exchanger is provided between the pre-treatment reactor and the regenerator to pass the solid sorbent free from CO2 therethrough.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: June 17, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Young Cheol Park, Sung-Ho Jo, Gyoung Tae Jin, Dowon Shun, Dal-Hee Bae, Jaehyeon Park, Ho-Jung Ryu, Seung-Yong Lee, Jong-Ho Moon, Dong-Ho Lee
  • Patent number: 8551232
    Abstract: Disclosed is a dry carbon dioxide capture apparatus with improved carbon dioxide capture efficiency through preventing gas backflows into vertical transport lines. The dry CO2 capture apparatus includes a capture reactor having a capture buffer chamber on the bottom side, a capture diffusion plate on top of the capture buffer chamber, and adsorbent particles in a space above the capture diffusion plate; a first separator connected to the capture reactor through a vertical transport line; a regenerator having a regeneration buffer chamber on the bottom side, a regenerating diffusion plate on top of the regeneration buffer chamber, and adsorbent particles in a space above the regenerating diffusion plate; a second separator connected to the regenerator through a gas separation line; and a second particle transfer line connected to the regenerator at one end and connected to the capture reactor at the other end.
    Type: Grant
    Filed: October 28, 2011
    Date of Patent: October 8, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Gyong-Tae Jin, Do-Won Sun, Sung-Ho Jo, Jae-Hyeon Park, Dal-Hee Bae, Ho-Jung Ryu, Young-Cheol Park, Seung-Yong Lee, Jong-Ho Moon
  • Patent number: 8496895
    Abstract: Disclosed are an exhaust gas treating apparatus and a treating method for a carbon dioxide capture process, in which harmful substances remaining in the exhaust gas discharged from the conventional flue-gas desulfurization process are additionally removed for efficient performance of the carbon dioxide capture process. According to the exhaust gas treating apparatus for a carbon dioxide capture process, it has the effects of minimizing the installation space of desulfurization equipment and reducing the process cost. In addition, by keeping the contaminants contained in the gas introduced in the carbon dioxide capture equipment below a proper level, absorption performance can be improved as degradation of the absorbent used in the carbon dioxide capture process is prevented. After all, it has an advantage of preventing the pollution by the exhaust gas discharged into the atmosphere.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: July 30, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Hyung-Keun Lee, Won-Kil Choi, Hang-Dae Jo, Chang-Keun Yi, Sung-Ho Jo, Young-Cheol Park
  • Publication number: 20130028820
    Abstract: Disclosed are an exhaust gas treating apparatus and a treating method for a carbon dioxide capture process, in which harmful substances remaining in the exhaust gas discharged from the conventional flue-gas desulfurization process are additionally removed for efficient performance of the carbon dioxide capture process. According to the exhaust gas treating apparatus for a carbon dioxide capture process, it has the effects of minimizing the installation space of desulfurization equipment and reducing the process cost. In addition, by keeping the contaminants contained in the gas introduced in the carbon dioxide capture equipment below a proper level, absorption performance can be improved as degradation of the absorbent used in the carbon dioxide capture process is prevented. After all, it has an advantage of preventing the pollution by the exhaust gas discharged into the atmosphere.
    Type: Application
    Filed: January 27, 2012
    Publication date: January 31, 2013
    Applicant: Korea Institute of Energy Research
    Inventors: Hyung-Keun Lee, Won-Kil Choi, Hang-Dae Jo, Chang-Keun Yi, Sung-Ho Jo, Young-Cheol Park
  • Patent number: 8349058
    Abstract: A regeneration reactor of a CO2 capture system is disclosed. According to an embodiment of the present invention, in the CO2 capture system comprising a capture reactor selectively adsorbing CO2 by bringing a CO2-containing gas supplied from the outside into contact with a solid adsorbent, and a regeneration reactor separating the adsorbed CO2 from the solid adsorbent adsorbed with the CO2, the regeneration reactor includes a chamber having an inverted truncated cone shape being widened toward an upper part and narrowed toward a lower part, such that a pressure in the regeneration reactor is constantly maintained through the whole part and accordingly, a flow velocity in the chamber can be constantly maintained.
    Type: Grant
    Filed: February 11, 2008
    Date of Patent: January 8, 2013
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Gyoung-Tae Jin, Do-Won Shun, Sung-Ho Jo, Jae-Hyeon Park, Dal-Hee Bae, Ho-Jung Ryu, Young-Cheol Park, Seung-Yong Lee
  • Publication number: 20120313008
    Abstract: A fluorescence detector for detecting fluorescence emitted from at least one sample contained in at least one sample unit, the fluorescence detector including at least one irradiating module which irradiates an excitation light to the sample; a fluorescence selecting unit which selectively transmits fluorescence emitted from the sample; a light-receiving unit which detects the fluorescence; and a telecentric lens positioned between the fluorescence selecting unit and the light-receiving unit, wherein each of the at least one irradiating module comprises: at least one light source which emits a light; an excitation light selecting unit which converts the light emitted from the at least one light source into the excitation light; and a beamsplitter which controls the excitation light to travel to the sample, and transmits the fluorescence emitted from the sample.
    Type: Application
    Filed: June 8, 2012
    Publication date: December 13, 2012
    Applicant: SAMSUNG TECHWIN CO., LTD.
    Inventors: Sung-Ho JO, Seong-Kook KIM, Tae-Gon KIM
  • Patent number: 8241408
    Abstract: Disclosed is a CO capturing device for improving CO removal efficiency and use of a dry solid absorbent. The device comprises a CO recovery reactor 1 to permit CO containing gas externally supplied to be in contact with a dry solid absorbent to capture CO; a recovery cyclone 4 connected to the recovery reactor 1 to exhaust CO-free gas while separating a solid portion containing CO; a fluidized bed type regeneration reactor 2 which receives the solid portion through a solid feeding pipe 5 connected to the recovery cyclone 4 and divides the solid portion into CO and the other part containing the dry solid absorbent by using a fluidizing gas fed through a fluidizing gas supply pipe 8; a regeneration cyclone 6 to exhaust the separated CO outside in order to use CO in the regeneration reactor 2; and a water vapor pretreatment device 3 connected to the regeneration reactor 2 to absorb H O in the dry solid absorbent and feedback the H O containing absorbent to the recovery reactor 1.
    Type: Grant
    Filed: February 13, 2007
    Date of Patent: August 14, 2012
    Assignee: Korea Institute of Energy Research
    Inventors: Chang-Keun Yi, Gyong-Tae Jin, Do-Wen Sun, Dal-Hee Bae, Jae-Hyeon Park, Sung-Ho Jo, Ho-Jung Ryu, Seoung-Yong Lee