Patents by Inventor Sung Hyun Jo

Sung Hyun Jo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160190208
    Abstract: A circuit operable as a non-volatile memory cell, formed in part from a volatile selection device, is provided. The circuit can be fabricated utilizing Integrated Circuit (IC)-Foundry compatible processes to simplify manufacturing, reduce cost and improve yield. For instance, the circuit can comprise a set of transistors fabricated at least in part with front-end-of-line IC processes, and can comprise the volatile selection device and a set of interconnects fabricated at least in part with back-end-of-line IC processes. In further embodiments, the volatile selection device can be a two-terminal, volatile resistive-switching device connected at one end to a gate of an n-well transistor, and connected at a second end to a gate of a p-well transistor.
    Type: Application
    Filed: March 10, 2016
    Publication date: June 30, 2016
    Inventors: Hagop Nazarian, Sung Hyun Jo, Harry Yue Gee
  • Patent number: 9362499
    Abstract: A method of forming a non-volatile memory device. The method forms a vertical stack of first polysilicon material and a second polysilicon material layer isolated by a dielectric material. The polysilicon material layers and the dielectric material are subjected to a first pattern and etch process to form a first wordline associated with a first switching device and a second wordline associated with a second switching device from the first polysilicon material layer, and a third wordline associated with a third switching device and a fourth wordline associated with a fourth switching device from the second polysilicon material. A via opening is formed to separate the first wordline from the second wordline and to separate the third wordline from the fourth wordline. An amorphous silicon switching material is deposited conformably overlying the via opening. A metal material fills the via opening and connects to a common bitline.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: June 7, 2016
    Assignee: Crossbar, Inc.
    Inventors: Harry Gee, Sung Hyun Jo, Hagop Nazarian, Scott Brad Herner
  • Patent number: 9343668
    Abstract: Providing for two-terminal memory cell structures and fabrication that can be achieved with a relatively low temperature process(es) is described herein. By way of example, disclosed two-terminal memory cells can be formed at least in part as a continuous deposition, potentially yielding improved efficiency in manufacturing. Furthermore, various embodiments can be compatible with some existing complementary metal oxide semiconductor fabrication processes, reducing or avoiding retooling overhead that might be associated with modifying existing fabrication processes in favor of other two-terminal memory cell fabrication techniques.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: May 17, 2016
    Assignee: CROSSBAR, INC.
    Inventors: Steve Maxwell, Sundar Narayanan, Sung Hyun Jo, Tanmay Kumar
  • Patent number: 9336876
    Abstract: Providing for improved programming techniques for endurance and memory retention in two-terminal memory is described herein. In some embodiments, a programming pulse can be configured to provide a minimum pulse time over which a program signal is applied to a two-terminal memory cell, following programming of the two-terminal memory cell. This minimum pulse time can help to stabilize the program state of the two-terminal memory cell, improving stability of the program state (e.g., related to memory retention) and overall increased endurance (e.g., in program cycles) of the two-terminal memory cell. The minimum pulse time can be initiated separately to a programming pulse, or can be integrated as part of the program pulse, in various embodiments. In some embodiments, current compliance or voltage control can be implemented in conjunction with providing programming and minimum pulse time functionality.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: May 10, 2016
    Assignee: Crossbar, Inc.
    Inventors: Tanmay Kumar, Layne Armijo, Sung Hyun Jo
  • Patent number: 9324942
    Abstract: Providing for a solid state memory cell having a resistive switching memory cell with rectifier characteristics is described herein. By way of example, the solid state memory cell can have one or more layers creating a resistive switching device capable of achieving and maintaining different electrical resistances in response to different voltages applied to the solid state memory cell. Moreover, the solid state memory cell can comprise two or more layers creating a solid state diode device electrically in series with the resistive switching device. The solid state diode device can be configured to permit very low current through the solid state memory cell at voltages less than a breakdown voltage or reverse breakdown voltage. The rectifier characteristics can mitigate sneak path currents in a crossbar memory array, or similar array, facilitating greater sensing margin, reduced likelihood of memory errors, greater die concentration, fast switching times, and other benefits.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: April 26, 2016
    Assignee: CROSSBAR, INC.
    Inventors: Hagop Nazarian, Tanmay Kumar, Sung Hyun Jo
  • Patent number: 9269898
    Abstract: Providing for low temperature deposition of silicon-based electrical conductor for solid state memory is described herein. In various disclosed embodiments, the silicon-based conductor can form an electrode of a memory cell, an interconnect between conductive components of an electronic device, a conductive via, a wire, and so forth. Moreover, the silicon-based electrical conductor can be formed as part of a monolithic process incorporating complementary metal oxide semiconductor (CMOS) device fabrication. In particular embodiments, the silicon-based electrical conductor can be a p-type silicon germanium compound, that is activated upon deposition at temperatures compatible with CMOS device fabrication.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: February 23, 2016
    Assignee: Crossbar, Inc.
    Inventors: Steven Patrick Maxwell, Kuk-Hwan Kim, Sung Hyun Jo
  • Publication number: 20160012886
    Abstract: A non-volatile memory device is provided that uses one or more volatile elements. In some embodiments, the non-volatile memory device can include a resistive two-terminal selector that can be in a low resistive state or a high resistive state depending on the voltage being applied. A MOS (“metal-oxide-semiconductor”) transistor in addition to a capacitor or transistor acting as a capacitor can also be included. A first terminal of the capacitor can be connected to a voltage source, and the second terminal of the capacitor can be connected to the selector device. A floating gate of an NMOS transistor can be connected to the other side of the selector device, and a second NMOS transistor can be connected in series with the first NMOS transistor.
    Type: Application
    Filed: May 20, 2015
    Publication date: January 14, 2016
    Inventors: Hagop Nazarian, Sung Hyun Jo
  • Publication number: 20160005964
    Abstract: The present application describes a crossbar memory array. The memory array includes a first array of parallel nanowires of a first material and a second array of parallel nanowires of a second material. The first and the second array are oriented at an angle with each other. The array further includes a plurality of nanostructures of non-crystalline silicon disposed between a nanowire of the first material and a nanowire of the second material at each intersection of the two arrays. The nanostructures form a resistive memory cell together with the nanowires of the first and second materials.
    Type: Application
    Filed: September 17, 2015
    Publication date: January 7, 2016
    Inventors: Wei LU, Sung Hyun JO, Kuk-Hwan KIM
  • Publication number: 20160005461
    Abstract: Providing for improved sensing of non-volatile resistive memory to achieve higher sensing margins, is described herein. The sensing can leverage current-voltage characteristics of a volatile selector device within the resistive memory. A disclosed sensing process can comprise activating the selector device with an activation voltage, and then lowering the activation voltage to a holding voltage at which the selector device deactivates for an off-state memory cell, but remains active for an on-state memory cell. Accordingly, very high on-off ratio characteristics of the selector device can be employed for sensing the resistive memory, providing sensing margins not previously achievable for non-volatile memory.
    Type: Application
    Filed: June 30, 2015
    Publication date: January 7, 2016
    Inventors: Sung Hyun Jo, Hagop Nazarian, Lin Shih Liu
  • Publication number: 20150357567
    Abstract: A method of suppressing propagation of leakage current in an array of switching devices. The method includes providing a dielectric breakdown element integrally and serially connected to a switching element within each of the switching device. A read voltage (for example) is applied to a selected cell. The propagation of leakage current is suppressed by each of the dielectric breakdown element in unselected cells in the array. The read voltage is sufficient to cause breakdown in the selected cells but insufficient to cause breakdown in the serially connected, unselected cells in a specific embodiment. Methods to fabricate of such devices and to program, to erase and to read the device are provided.
    Type: Application
    Filed: April 3, 2015
    Publication date: December 10, 2015
    Inventors: Wei Lu, Sung Hyun Jo
  • Publication number: 20150340406
    Abstract: Providing a high-density two-terminal memory architecture(s) having performance benefits of two-terminal memory and relatively low fabrication cost, is described herein. By way of example, the two-terminal memory architecture(s) can be constructed on a substrate, in various embodiments, and comprise two-terminal memory cells formed within conductive layer recess structures of the memory architecture. In one embodiment, a conductive layer recess can be created as a horizontal etch in conjunction with a vertical via etch. In another embodiment, the conductive layer recess can be patterned for respective conductive layers of the two-terminal memory architecture.
    Type: Application
    Filed: March 9, 2015
    Publication date: November 26, 2015
    Inventor: Sung Hyun Jo
  • Patent number: 9196831
    Abstract: Providing for two-terminal memory having an inherent rectifying characteristic(s) is described herein. By way of example, the two-terminal memory can be a resistive switching device having one or more “on” states and an “off” state, to facilitate storage of digital information. A conductive filament can be electrically isolated from an electrode of the two-terminal memory by a thin tunneling layer, which permits a tunneling current for voltages greater in magnitude than a positive rectifying voltage or a negative rectifying voltage. The two-terminal memory cell can therefore have high resistance to small voltages, mitigating leakage currents in an array of the two-terminal memory cells. In addition, the memory cell can be conductive above a rectifying voltage, enabling reading of the memory cell in response to a suitable read bias, and erasing of the memory cell in response to a suitable negative erase bias.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: November 24, 2015
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Patent number: 9166163
    Abstract: Provision of fabrication, construction, and/or assembly of a two-terminal memory device is described herein. The two-terminal memory device can include an active region with a silicon bearing layer, an interface layer, and an active metal layer. The interface layer can created comprising a non-stoichimetric sub-oxide that can be a combination of multiple silicon and/or silicon oxide layers with an aggregate chemical formula of SiOX, where X can be a non-integer greater than zero and less than 2. The sub-oxide can be created in a variety of ways, including various techniques related to growing the sub-oxide, depositing the sub-oxide, or transforming an extant film into the sub-oxide.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 20, 2015
    Assignee: Crossbar, Inc.
    Inventors: Harry Yue Gee, Mark Harold Clark, Steven Patrick Maxwell, Sung Hyun Jo, Natividad Vasquez, Jr.
  • Patent number: 9159416
    Abstract: The present application describes a crossbar memory array. The memory array includes a first array of parallel nanowires of a first material and a second array of parallel nanowires of a second material. The first and the second array are oriented at an angle with each other. The array further includes a plurality of nanostructures of non-crystalline silicon disposed between a nanowire of the first material and a nanowire of the second material at each intersection of the two arrays. The nanostructures form a resistive memory cell together with the nanowires of the first and second materials.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: October 13, 2015
    Assignee: The Regents of The University of Michigan
    Inventors: Wei Lu, Sung Hyun Jo, Kuk-Hwan Kim
  • Patent number: 9153624
    Abstract: A solid state memory comprises a top electrode, a bottom electrode and an insulating switching medium that is disposed at a thickness based on a predetermined function. The insulating switching medium generates a conduction path in response to an electric signal applied to the device. The thickness of the insulating switching medium is a function of a filament width of the conduction path and operates to prevent rupture of a semi-stable region. The semi-stable region maintains filament structure over time and does not degrade into retention failure. The solid state memory can comprise one or more conducting layers that can operate to control the conductance at an on-state of the memory and offer oxygen vacancies or metal ions to the switching medium. The function of the thickness of the insulating switching medium can vary depending upon the number of conduction layers disposed at the insulating switching medium.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: October 6, 2015
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Publication number: 20150263069
    Abstract: Providing for solid state memory having a non-linear current-voltage (I-V) response is disclosed herein. By way of example, the subject disclosure provides a selector device. The selector device can be formed in series with a non-volatile memory device via a monolithic fabrication process. Further, the selector device can provide a substantially non-linear I-V response suitable to mitigate leakage current for the non-volatile memory device. In various disclosed embodiments, the series combination of the selector device and the non-volatile memory device can serve as one of a set of memory cells in a 1-transistor, many-resistor resistive memory cell array.
    Type: Application
    Filed: December 31, 2014
    Publication date: September 17, 2015
    Inventor: Sung Hyun Jo
  • Patent number: 9129887
    Abstract: A non-volatile resistive switching memory device. The device includes a first electrode, a second electrode, a switching material in direct contact with a metal region of the second electrode, and a resistive material disposed between the second electrode and the switching material. The resistive material has an ohmic characteristic and a resistance substantially the same as an on state resistance of the switching device. The resistive material allows for a change in a resistance of the switching material upon application of voltage pulse without time delay and free of a reverse bias after the voltage pulse. The first voltage pulse causes a programming current to flow from the second electrode to the first electrode. The resistive material further causes the programming current to be no greater than a predetermined value.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: September 8, 2015
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Patent number: 9118007
    Abstract: A two-terminal memory cell comprises a dual mode of operation in a unipolar mode and bipolar mode for a programming or On-state and for an erase or Off-state of the cell. The two-terminal memory cell is field programmable and can be flexibly designed or integrated into existing architecture. The two-terminal memory comprises a first electrode layer and a second electrode layer with a switching layer disposed between that has an electrical insulator material. A semiconductor layer is disposed between the switching layer and at least one of the first electrode or the second electrode. The switching layer generates a conductive path that is configured to be in a program state and an erase state, based on a bipolar mode and a unipolar mode.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: August 25, 2015
    Assignee: Crossbar, Inc.
    Inventor: Sung Hyun Jo
  • Patent number: 9112145
    Abstract: Providing for rectified-switching of a two-terminal solid state memory cell is described herein. By way of example, the subject disclosure provides a solid state device exhibiting rectified resistive switching characteristics that can be fabricated with semiconductor fabrication techniques. The solid state device can comprise a metal ion layer adjacent to an electrically resistive diffusion layer, which is at least in part permeable to conductive ions of the metal ion layer. A pair of electrodes can be placed, respectively, on opposite sides of the adjacent ion layer and electrically resistive diffusion layer to facilitate operating on the two-terminal solid state memory cell. In operation, a program voltage induces conductive ions to form a semi-stable conductive filament within the diffusion layer, which partially deforms in response to reduction in the program voltage.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: August 18, 2015
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo
  • Publication number: 20150228334
    Abstract: A non-volatile memory device includes a word line extending along a first direction; a bit line extending along a second direction; a memory unit having a read transistor coupled to the bit line, at least one two-terminal memory cell, and a select transistor, the two-terminal memory cell having a first end coupled to the word line and a second end coupled to a gate of the read transistor. The second end of the two-terminal memory cell is coupled to a common node shared by a drain of the select transistor and the gate of the read transistor.
    Type: Application
    Filed: April 21, 2015
    Publication date: August 13, 2015
    Inventors: Hagop NAZARIAN, Sung Hyun JO, Wei LU