Patents by Inventor Sung Pil Yoon

Sung Pil Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10276887
    Abstract: Disclosed herein is a battery cell having an electrode assembly including one or more unit cells mounted in a variable cell case in a state in which the electrode assembly is impregnated with an electrolyte, wherein at least one of the unit cells includes a flexible electrode that can be bent or curved, an electrode current collector of the flexible electrode includes a first surface, to which an electrode active material is applied, and a second surface, to which no electrode active material is applied, the second surface being opposite to the first surface, and the second surface is provided with a mesh for improving flexibility of the electrode.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: April 30, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Seong Min Kim, Jin Soo Lee, Joo Hwan Sung, Sung Pil Yoon, Jung Koo Kang, Ju Bin Kim, Hae Jin Lim, Seunghe Woo
  • Patent number: 10276875
    Abstract: An anode for a molten carbonate fuel cell (MCFC) having improved creep property by adding CeO2 and/or Cr for imparting creep resistance to nickel-aluminum alloy and nickel as materials for an anode is provided. Improved sintering property, creep property and increased mechanical strength of a molten carbonate fuel cell may be obtained accordingly.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: April 30, 2019
    Assignee: Korean Institute of Science and Technology
    Inventors: Hyung Chul Ham, Min-Jae Lee, Chang-Whan Lee, Seong Cheol Jang, Sun-Hee Choi, Hyun Seo Park, Chang Won Yoon, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Tae Hoon Lim, Jin Young Kim
  • Patent number: 10236527
    Abstract: Provided are a method for preparing a Nafion membrane having a through-pore free monolithic porous structure throughout the bulk of the membrane through a one-step process very easily and a Nafion membrane having a through-pore free monolithic porous structure obtained from the method. The Nafion membrane having such a porous structure may have an increased surface area, and thus may improve the membrane/catalyst interfacial area and transport characteristics.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: March 19, 2019
    Assignee: Korean Institute of Science and Technology
    Inventors: Dirk Henkensmeier, Dickson Joseph, Jong Hyun Jang, Jin Young Kim, Hyoung-Juhn Kim, Jonghee Han, Suk Woo Nam, Sung Pil Yoon
  • Publication number: 20190039890
    Abstract: A hydrogen production device is provided. The device comprises: a dry reforming reaction unit for directly reacting methane and carbon dioxide in biogas to produce a synthesis gas containing hydrogen; and a gas shift unit for reacting carbon monoxide in the synthesis gas produced in the dry reforming reaction unit with water vapor to produce carbon dioxide and hydrogen, and for capturing the produced carbon dioxide.
    Type: Application
    Filed: July 26, 2018
    Publication date: February 7, 2019
    Inventors: Hyung Chul HAM, Byeong Wan KWON, Chan Hyun LEE, Joohyeng OH, Seong Cheol JANG, Sun-Hee CHOI, Hyun Seo PARK, Chang Won YOON, Jonghee HAN, Sung Pil YOON, Suk Woo NAM, Ki Bong LEE
  • Patent number: 10186712
    Abstract: Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
    Type: Grant
    Filed: October 23, 2017
    Date of Patent: January 22, 2019
    Assignee: KOREA INSTITUE OF SCIENCE AND TECHNOLOGY
    Inventors: Hyung Chul Ham, Jinwon Cho, Hyun Seo Park, Jong Hyun Jang, Sung Jong Yoo, Chang Won Yoon, Hyoung-Juhn Kim, Sung Pil Yoon, Jonghee Han, Suk Woo Nam
  • Patent number: 10144993
    Abstract: Provided is a catalyst for oxygen reduction reaction comprising an alloy comprising at least one selected from Pt, Pd and Ir supported on a carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM). The catalyst for oxygen reduction reaction has electronic ensemble effects by virtue of the carbon carrier functionalized with poly(N-isopropylacrylamide) (PNIPAM), and thus shows improved oxygen reduction activity and durability as compared to conventional catalysts supported on carbon.
    Type: Grant
    Filed: October 20, 2015
    Date of Patent: December 4, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sung Jong Yoo, Jong Hyun Jang, Hyoung-Juhn Kim, Namgee Jung, Suk Woo Nam, Jonghee Han, Sung Pil Yoon, Jaeyune Ryu, Tae Hoon Lim, Jin Young Kim
  • Patent number: 10115938
    Abstract: Disclosed herein is a battery case made of a laminate sheet including an outer coating layer made of a weather-resistant polymer, an inner sealant layer made of a thermally bondable polymer, and a barrier layer interposed between the outer coating layer and the inner sealant layer, wherein an electrode assembly configured to be bent or curved in conformity with the shape of a device, in which a battery cell is mounted, is received in the battery case, and a pattern is formed on at least one surface of the battery case that faces an outer surface of the electrode assembly.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: October 30, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Hae Jin Lim, Jung Koo Kang, Seong Min Kim, Ju Bin Kim, Joo Hwan Sung, Seunghe Woo, Sung Pil Yoon, Jin Soo Lee
  • Patent number: 10090492
    Abstract: Disclosed herein is a battery cell having an electrode assembly mounted in a variable cell case in a state in which the electrode assembly is impregnated with an electrolyte, the battery cell being configured to be flexibly deformed in response to the shape of a device, in which the battery cell is mounted, wherein an uppermost end electrode and/or a lowermost end electrode of the electrode assembly in the direction in which electrodes are stacked is provided on an electrode current collector thereof, facing the inner surface of the cell case, with an electrode mixture including inert particles, 10 to 100% of the inert particles being distributed on the surface of the electrode mixture such that a concave-convex structure is formed in the surface of the electrode mixture in vertical section.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: October 2, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Jung Koo Kang, Jin Soo Lee, Joo Hwan Sung, Sung Pil Yoon, Seong Min Kim, Ju Bin Kim, Hae Jin Lim, Seunghe Woo
  • Publication number: 20180269699
    Abstract: The present disclosure provides a battery cell charging and discharging apparatus configured to charge and discharge a battery cell which is sealed in a state in which an electrode assembly is embedded in a battery case and includes a first die plate having a first charging pin which is connected to a first electrode terminal of the battery cell by being contacted thereto during a charging and discharging process of the battery cell. The first die plate includes an insulation mask of an electrical insulation material formed in a structure covering a remaining part of the battery cell excluding the first electrode terminal at a position corresponding to the first charging pin and mask fixing portions configured to fix both sides of the insulation mask so that a position of the insulation mask is set.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 20, 2018
    Inventors: Sung Pil Yoon, Jin Soo Lee
  • Publication number: 20180269493
    Abstract: Provided are: a dry reforming catalyst, in which a noble metal (M) is doped in a nickel yttria stabilized zirconia complex (Ni/YSZ) and an alloy (M-Ni alloy) of the noble metal (M) and nickel is formed at Ni sites on a surface of the nickel yttria stabilized zircona (YSZ); a method for producing the dry reforming catalyst using the noble metal/glucose; and a method for performing dry reforming using the catalyst. The present invention can exhibit a significantly higher dry reforming activity as compared with Ni/YSZ catalysts. Furthermore, the present invention can have an improved long-term performance by suppressing or preventing the deterioration. Furthermore, the preparing method is useful in performing the alloying of noble metal with Ni at Ni sites on the Ni/YSZ surface and can simplify the preparing process, and thus is suitable in mass production.
    Type: Application
    Filed: March 4, 2015
    Publication date: September 20, 2018
    Inventors: Suk Woo NAM, Chang Won YOON, Yeong Cheon KIM, Yong Min KIM, Jonghee HAN, Sung Pil YOON, Hyung Chul HAM, Jihoon JEONG, Seok-Keun KOH
  • Patent number: 10050301
    Abstract: Disclosed herein is a battery cell having an electrode assembly mounted in a variable cell case in a state in which the electrode assembly is impregnated with an electrolyte, the battery cell being configured to be flexibly deformed in response to the shape of a device, in which the battery cell is mounted, wherein a coating part including inert particles is formed on at least one outer surface of the electrode assembly.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: August 14, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Jung Koo Kang, Jin Soo Lee, Joo Hwan Sung, Sung Pil Yoon, Seong Min Kim, Ju Bin Kim, Hae Jin Lim, Seunghe Woo
  • Patent number: 10014497
    Abstract: Disclosed herein is a battery cell configured such that an electrode assembly having a positive electrode/separator/negative electrode structure is received in an electrode assembly receiving part formed in a pouch-type battery case in a sealed state together with an electrolyte, wherein the battery case is provided with sealed parts, formed by thermally welding the outer edge of the battery case in the state in which the electrode assembly is received in the battery case together with the electrolyte, one or more recesses are formed in opposite side sealed parts adjacent to an upper end sealed part, at which electrode terminals are located, and/or a lower end sealed part in a state in which the recesses are formed from outsides of the side sealed parts toward a vertical middle axis of the battery cell so as to prevent wrinkles from being formed in the sealed parts of the battery case when the battery cell is bent, and portions of the side sealed parts in which the recesses are located are sealed at a higher
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: July 3, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Jin Soo Lee, Joo Hwan Sung, Sung Pil Yoon, Seong Min Kim, Jung Koo Kang, Ju Bin Kim, Hae Jin Lim, Seunghe Woo
  • Patent number: 9993806
    Abstract: Provided is a method for preparing a catalyst for a dehydrogenation reaction of formic acid, the method including: preparing a nitrogen-doped carbon support; forming a mixed solution including a first aqueous metal precursor solution which includes palladium (Pd) and a second aqueous metal precursor solution which includes nickel (Ni); and forming a catalyst for a dehydrogenation reaction of formic acid by stirring the nitrogen-doped carbon support with the mixed solution, and then immobilizing alloy particles of Pd and Ni on the nitrogen-doped carbon support.
    Type: Grant
    Filed: September 19, 2017
    Date of Patent: June 12, 2018
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chang Won Yoon, Yeong Cheon Kim, Hyun Seo Park, Hyung Chul Ham, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Seong Cheol Jang
  • Publication number: 20180123139
    Abstract: Provided is a catalyst for an oxygen reduction reaction, including an alloy in which two metals are mixed, in which the corresponding alloy is an alloy of iridium (Ir); and silicon (Si), phosphorus (P), germanium (Ge), or arsenic (As). The corresponding catalyst for the oxygen reduction reaction may have excellent price competitiveness while exhibiting a catalytic activity which is equal to or similar to that of an existing Pt catalyst. Accordingly, when the catalyst is used, the amount of platinum catalyst having low price competitiveness may be reduced, so that a production unit cost of a system to which the corresponding catalyst is applied may be lowered.
    Type: Application
    Filed: October 23, 2017
    Publication date: May 3, 2018
    Inventors: Hyung Chul HAM, Jinwon CHO, Hyun Seo PARK, Jong Hyun JANG, Sung Jong YOO, Chang Won YOON, Hyoung-Juhn KIM, Sung Pil YOON, Jonghee HAN, Suk Woo NAM
  • Patent number: 9954240
    Abstract: Disclosed are a 5-(2,6-dioxyphenyl)tetrazole-containing polymer, a method for preparing the same, a membrane containing the same and an electrochemical device, particularly a high temperature polymer electrolyte membrane fuel cell, including the membrane. The membrane containing the 5-(2,6-dioxyphenyl)tetrazole-containing polymer is capable of providing high proton conductivity and exhibiting good mechanical properties, thereby capable of providing superior fuel cell performance. Accordingly, the membrane may be usefully used in an electrochemical device, particularly a fuel cell, more particularly a high temperature polymer electrolyte membrane fuel cell.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: April 24, 2018
    Assignees: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, JAGIELLONIAN UNIVERSITY
    Inventors: Dirk Henkensmeier, Jong Hyun Jang, Hyoung-Juhn Kim, Jin Young Kim, Sung Pil Yoon, Jonghee Han, Suk Woo Nam, Ngoc My Hanh Duong, Artur Michalak, Karol Dyduch, Mateusz Brela
  • Publication number: 20180093889
    Abstract: Provided is a liquid hydrogen storage material including 1,1?-biphenyl and 1,1?-methylenedibenzene, the liquid hydrogen storage material including the corresponding 1,1?-biphenyl and 1,1?-methylenedibenzene at a weight ratio of 1:1 to 1:2.5. The corresponding liquid hydrogen storage material has excellent hydrogen storage capacity value by including materials having high hydrogen storage capacity, and is supplied in a liquid state, and as a result, it is possible to minimize initial investment costs and the like required when the corresponding liquid hydrogen storage material is used as a hydrogen storage material in a variety of industries.
    Type: Application
    Filed: September 25, 2017
    Publication date: April 5, 2018
    Inventors: Chang Won YOON, Dajung HAN, Yeong Cheon KIM, Hyun Seo PARK, Hyung Chul HAM, Sung Pil YOON, Jonghee HAN, Tae Hoon LIM, Suk Woo NAM
  • Publication number: 20180085738
    Abstract: Provided is a method for preparing a catalyst for a dehydrogenation reaction of formate and a hydrogenation reaction of bicarbonate, the method including: adding a silica colloid to a polymerization step of polymerizing aniline and reacting the resulting mixture to form a poly(silica-aniline) composite; carbonizing the corresponding poly(silica-aniline) composite under an atmosphere of an inert gas; removing silica particles from the corresponding poly(silica-aniline) composite to form a polyaniline-based porous carbon support; and fixing palladium particles on the corresponding polyaniline-based porous carbon support to prepare the catalyst.
    Type: Application
    Filed: September 29, 2017
    Publication date: March 29, 2018
    Applicants: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY, Rutgers University
    Inventors: Chang Won Yoon, Hyung Chul Ham, Suk Woo Nam, Tewodros Asefa, Katherine Koh, Jonghee Han, Sung Pil Yoon, Hyun Seo Park, Mina Jeon
  • Publication number: 20180078925
    Abstract: Provided is a method for preparing a catalyst for a dehydrogenation reaction of formic acid, the method including: preparing a nitrogen-doped carbon support; forming a mixed solution including a first aqueous metal precursor solution which includes palladium (Pd) and a second aqueous metal precursor solution which includes nickel (Ni); and forming a catalyst for a dehydrogenation reaction of formic acid by stirring the nitrogen-doped carbon support with the mixed solution, and then immobilizing alloy particles of Pd and Ni on the nitrogen-doped carbon support.
    Type: Application
    Filed: September 19, 2017
    Publication date: March 22, 2018
    Inventors: Chang Won YOON, Yeong Cheon KIM, Hyun Seo PARK, Hyung Chul HAM, Sung Pil YOON, Jonghee HAN, Suk Woo NAM, Seong Cheol JANG
  • Publication number: 20180048009
    Abstract: Disclosed are a method for supplying molten carbonate fuel cell with electrolyte and a molten carbonate fuel cell using the same, wherein a molten carbonate electrolyte is generated from a molten carbonate electrolyte precursor compound in a molten carbonate fuel cell and is supplied to the molten carbonate fuel cell.
    Type: Application
    Filed: August 11, 2017
    Publication date: February 15, 2018
    Inventors: Sung Pil YOON, Jonghee HAN, Hyung Chul HAM, Chang Won YOON, Sun-Hee CHOI, Hyun Seo PARK, Yeong Cheon KIM, Chang-Whan LEE, Hyoung-Juhn KIM, Tae Hoon LIM, Suk Woo NAM, Seong Cheol JANG
  • Publication number: 20180034028
    Abstract: The present invention relates to a jelly-roll type electrode assembly comprising: a sheet-like positive electrode; a sheet-like negative electrode; and a separator which is interposed between the positive electrode and the negative electrode, and which includes a first adhesive coating part and a second adhesive coating part formed on a first surface of a sheet-like porous substrate, and a third adhesive coating part formed on a second surface which is the opposite surface to the first surface, wherein the first adhesive coating part and the second adhesive coating part have different tack strength from each other.
    Type: Application
    Filed: September 2, 2016
    Publication date: February 1, 2018
    Applicant: LG CHEM, LTD.
    Inventors: Sung Han JUNG, Ki Woong KIM, Sung Pil YOON