Patents by Inventor Sunipa Saha

Sunipa Saha has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130310891
    Abstract: A system or apparatus can provide electrostimulations via an electrode configuration that can be selected from multiple electrode configurations, the electrostimulations of the type for inducing a desired heart contraction, or a neurostimulation response. The system or apparatus can allow communicating with an external device to receive an input indicating a degree of patient discomfort with an electrostimulation delivered using a first electrode configuration, and can associate information about the degree of discomfort with information about the corresponding first electrode configuration for use by a controller circuit in determining a second electrode configuration for delivering a subsequent electrostimulation.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 21, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Eric K. Enrooth, Sunipa Saha, Krzysztof Z. Siejko, Kenneth N. Hayes, Aaron R. McCabe
  • Publication number: 20130261471
    Abstract: Some method examples may include pacing a heart with cardiac paces, sensing a physiological signal for use in detecting pace-induced phrenic nerve stimulation, performing a baseline level determination process to identify a baseline level for the sensed physiological signal, and detecting pace-induced phrenic nerve stimulation using the sensed physiological signal and the calculated baseline level. Detecting pace-induced phrenic nerve stimulation may include sampling the sensed physiological signal during each of a plurality of cardiac cycles to provide sampled signals and calculating the baseline level for the physiological signal using the sampled signals. Sampling the sensed physiological signal may include sampling the signal during a time window defined using a pace time with each of the cardiac cycles to avoid cardiac components and phrenic nerve stimulation components in the sampled signal.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Sunipa Saha, Yanting Dong, Holly Rockweiler
  • Publication number: 20130261688
    Abstract: In an example of a method, the method includes testing for phrenic nerve stimulation (PS) threshold. If PS beats are detected at the pacing output level, analyzing the detected PS beats using criteria to determine if the pacing output level can be declared to be the PS threshold. If the pacing output level cannot be declared to be the PS threshold based on the analysis of the PS beat at the pacing output level, performing a PS beat confirmation procedure. The PS beat confirmation procedure may include delivering additional cardiac paces at the pacing output level to generate additional PS beats, and analyzing the detected PS beats using other criteria to determine if the pacing output level can be confirmed as the PS threshold.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Yanting Dong, Sunipa Saha, Holly Rockweiler
  • Publication number: 20130261476
    Abstract: In an example, a system includes a cardiac pulse generator configured to generate cardiac paces to pace the heart, a sensor configured to sense a physiological signal for use in detecting pace-induced phrenic nerve stimulation where the pace-induced phrenic nerve stimulation is phrenic nerve stimulation induced by electrical cardiac pace signals, and a phrenic nerve stimulation detector configured to analyze the sensed physiological signal to detect PS beats where the PS beats are cardiac paces that induce phrenic nerve stimulation. The detector may be configured to correlate signal data for sensed beat signals to a PS template to detect PS beats, or may be configured to analyze morphological features of sensed beat signals to detect PS beats, or may be configured to detect PS beats using a combination that both correlates signal data for sensed beat signals to a PS template and analyzes morphological features of sensed beat signals.
    Type: Application
    Filed: February 28, 2013
    Publication date: October 3, 2013
    Applicant: Cardiac Pacemakers, Inc.
    Inventors: Holly Rockweiler, Sunipa Saha, Yanting Dong
  • Publication number: 20120165897
    Abstract: Approaches for rate initialization and overdrive pacing used during capture threshold testing are described. Cardiac cycles are detected and the cardiac events of a cardiac chamber that occur during the cardiac cycles are monitored. The number of intrinsic beats in the cardiac events is counted. Initialization for a capture threshold test involves maintaining a pre-test pacing rate for the capture threshold test if the number of intrinsic beats in the cardiac events is less than a threshold. The pacing rate is increased for the capture threshold test if the number of intrinsic beats in the cardiac events is greater than the threshold.
    Type: Application
    Filed: November 29, 2011
    Publication date: June 28, 2012
    Inventors: Eric K. Enrooth, Sunipa Saha, Clayton Foster, Yanting Dong
  • Publication number: 20120130220
    Abstract: Cardiac lead implantation systems, devices, and methods for lead implantation are disclosed. An illustrative cardiac lead implantation system comprises a mapping guidewire including one or more electrodes configured for sensing cardiac electrical activity, a signal analyzer including an analysis module configured for analyzing an electrocardiogram signal sensed by the mapping guidewire, and a user interface configured for monitoring one or more hemodynamic parameters within the body. The sensed electrical activity signal can be used by the analysis module to compute a timing interval associated with ventricular depolarization.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 24, 2012
    Inventors: Barun Maskara, Yinghong Yu, Bruce A. Tockman, Sunipa Saha, Martin McDaniel, Geng Zhang
  • Publication number: 20120035685
    Abstract: An interactive representation of electrostimulation electrodes or vectors can be provided, such as for configuring combinations of electrostimulation electrodes. In an example, electrodes or test parameters can be presented graphically or in a table. A user interface can be configured to receive user-input designating electrode combinations or vectors for test or for use in programming an implantable or ambulatory medical device. The interface can be used to indicate suggested electrode combinations or vectors in response to a first selection of an electrode. Tests can be performed on electrode combinations and vectors, and the results of the tests can be presented to a user using the interactive representation. In an example, test results can be analyzed by a processor and optionally used to program an implantable or ambulatory medical device.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 9, 2012
    Inventors: Sunipa Saha, Kenneth N. Hayes, Keith L. Herrmann, James Kalgren, Aaron R. McCabe, Holly Rockweiler, Shibaji Shome, Krzysztof Z. Siejko
  • Publication number: 20100318151
    Abstract: Embodiments of the invention are related to managing noise in sensed signals in implantable medical devices, amongst other things. In an embodiment the invention includes a method for processing electrical signals obtained from a patient including gathering a first set of electrical signals using an implantable medical device, filtering to provide a second set of electrical signals, the second set including frequencies above a threshold frequency, and estimating the amount of noise present in the first set of electrical signals based on the magnitude of the second set. In an embodiment, the invention includes a medical device configured to gather a first set of electrical signals, filter the first set to provide a second set of electrical signals including frequencies above a threshold frequency, and estimate the amount of noise present in the first set based on the magnitude of the second set. Other embodiments are also included herein.
    Type: Application
    Filed: June 15, 2010
    Publication date: December 16, 2010
    Applicant: CARDIAC PACEMAKERS, INC.
    Inventors: Sunipa Saha, Eric K. Enrooth, Scot C. Boon