Patents by Inventor Sun-Ja Kim

Sun-Ja Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240107842
    Abstract: A display device includes a substrate including a display area and a peripheral area disposed around the display area. The peripheral area includes a bending region and a contact region adjacent to the bending region. A first connection line includes a first portion disposed in the contact region, and a second portion disposed in both the bending region and the contact region, and including a first layer and a second layer. At least part of the second layer of the second portion overlaps the first layer of the second portion. In the contact region, the first layer of the second portion is electrically connected to the first portion, and the second layer of the second portion is electrically connected to the first layer of the second portion.
    Type: Application
    Filed: December 8, 2023
    Publication date: March 28, 2024
    Inventors: Hyun Ae PARK, Sun-Ja KWON, Byung Sun KIM, Yang Wan KIM, Su Jin LEE, Jae Yong LEE
  • Patent number: 11776807
    Abstract: Methods for controlling the formation of oxygen containing thin films, such as silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that comprises oxygen and a second reactant that does not include oxygen. In some embodiments the plasma power can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features.
    Type: Grant
    Filed: October 22, 2021
    Date of Patent: October 3, 2023
    Assignee: ASM IP Holding, B.V.
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia
  • Patent number: 11728164
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Grant
    Filed: October 11, 2021
    Date of Patent: August 15, 2023
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Patent number: 11501965
    Abstract: Methods for depositing oxide thin films, such as metal oxide, metal silicates, silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first reactant that comprises oxygen and a component of the oxide, and a second reactant comprising reactive species that does not include oxygen species. In some embodiments the plasma power used to generate the reactive species can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features. In some embodiments oxide thin films are selectively deposited on a first surface of a substrate relative to a second surface, such as on a dielectric surface relative to a metal or metallic surface.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: November 15, 2022
    Assignee: ASM IP HOLDING B.V.
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia, Eva Tois, Suvi Haukka, Toshiya Suzuki
  • Publication number: 20220076949
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Application
    Filed: October 11, 2021
    Publication date: March 10, 2022
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Publication number: 20220044931
    Abstract: Methods for controlling the formation of oxygen containing thin films, such as silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that comprises oxygen and a second reactant that does not include oxygen. In some embodiments the plasma power can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 10, 2022
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia
  • Patent number: 11170993
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: November 9, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Patent number: 11158500
    Abstract: Methods for controlling the formation of oxygen containing thin films, such as silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that comprises oxygen and a second reactant that does not include oxygen. In some embodiments the plasma power can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 26, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia
  • Patent number: 10991573
    Abstract: Plasma enhanced atomic layer deposition (PEALD) processes for simultaneously depositing SiOC on two or more different surfaces of a substrate are provided. For example, SiOC may be deposited simultaneously on a first dielectric surface and a second metal or metallic surface. The PEALD processes can comprise two or more deposition cycles for forming SiOC on the two surfaces. The deposition cycles may comprise alternately and sequentially contacting the substrate with a first precursor comprising silicon and a second plasma reactant, such as an Ar/H2 plasma. In some embodiments, a PEALD process further comprises contacting the substrate with a plasma reactant prior to beginning the deposition cycle. In some embodiments, the deposition cycle is repeated more than 500 times and a uniform SiOC film may be formed on the two different surfaces.
    Type: Grant
    Filed: December 3, 2018
    Date of Patent: April 27, 2021
    Assignee: ASM IP HOLDING B.V.
    Inventors: Lingyun Jia, Viljami Pore, Eva Tois, Sun Ja Kim
  • Publication number: 20200395211
    Abstract: Methods for controlling the formation of oxygen containing thin films, such as silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a silicon precursor that comprises oxygen and a second reactant that does not include oxygen. In some embodiments the plasma power can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features.
    Type: Application
    Filed: May 3, 2018
    Publication date: December 17, 2020
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia
  • Patent number: 10644025
    Abstract: A method of processing a substrate by omitting a photolithographic process is disclosed. The method includes forming at least one layer on a stepped structure having an upper surface, a lower surface, and a side surface that connects the upper surface to the lower surface, selectively densifying portions of the at least one layer respectively on the upper surface and the lower surface via asymmetric plasma application, and performing an isotropic etching process on the at least one layer. During the isotropic etching process, the portion of the at least one layer formed on the upper surface is separated from the portion of the at least one layer formed on the lower surface.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: May 5, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Seung Ju Chun, Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim, Yoon Ki Min, Hae Jin Lee, Tae Hee Yoo
  • Patent number: 10622375
    Abstract: A method of processing a substrate by omitting a photolithographic process is disclosed. The method includes forming at least one layer on a stepped structure having an upper surface, a lower surface, and a side surface that connects the upper surface to the lower surface, selectively densifying portions of the at least one layer respectively on the upper surface and the lower surface via asymmetric plasma application, and performing an isotropic etching process on the at least one layer. During the isotropic etching process, the portion of the at least one layer formed on the upper surface is separated from the portion of the at least one layer formed on the lower surface.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: April 14, 2020
    Assignee: ASM IP Holding B.V.
    Inventors: Seung Ju Chun, Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim, Yoon Ki Min, Hae Jin Lee, Tae Hee Yoo
  • Publication number: 20200066512
    Abstract: Methods for selectively depositing oxide thin films on a dielectric surface of a substrate relative to a metal surface are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first precursor comprising oxygen and a species to be included in the oxide, such as a metal or silicon, and a second plasma reactant. In some embodiments the second plasma reactant comprises a plasma formed in a reactant gas that does not comprise oxygen. In some embodiments the second plasma reactant comprises plasma generated in a gas comprising hydrogen.
    Type: Application
    Filed: May 3, 2018
    Publication date: February 27, 2020
    Inventors: Eva Tois, Viljami Pore, Suvi Haukka, Toshiya Suzuki, Lingyun Jia, Sun Ja Kim, Oreste Madia
  • Patent number: 10381226
    Abstract: A method of processing a substrate to enable selective doping without a photolithography process is provided. The method includes forming a diffusion barrier on the substrate having a patterned structure using plasma deposition method, removing the diffusion barrier except for part of the diffusion barrier using wet etching, forming a diffusion source layer on the patterned structure and the part of the diffusion barrier, and applying energy to the diffusion source layer.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: August 13, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim
  • Publication number: 20190172701
    Abstract: Plasma enhanced atomic layer deposition (PEALD) processes for simultaneously depositing SiOC on two or more different surfaces of a substrate are provided. For example, SiOC may be deposited simultaneously on a first dielectric surface and a second metal or metallic surface. The PEALD processes can comprise two or more deposition cycles for forming SiOC on the two surfaces. The deposition cycles may comprise alternately and sequentially contacting the substrate with a first precursor comprising silicon and a second plasma reactant, such as an Ar/H2 plasma. In some embodiments, a PEALD process further comprises contacting the substrate with a plasma reactant prior to beginning the deposition cycle. In some embodiments, the deposition cycle is repeated more than 500 times and a uniform SiOC film may be formed on the two different surfaces.
    Type: Application
    Filed: December 3, 2018
    Publication date: June 6, 2019
    Inventors: Lingyun Jia, Viljami Pore, Eva Tois, Sun Ja Kim
  • Patent number: 10249577
    Abstract: A semiconductor manufacturing method includes depositing a low-k dielectric layer, forming a trench in the low-k dielectric layer, forming a barrier layer in the trench, filling a metal on the barrier layer, planarizing the metal, and forming a capping layer on the planarized metal, wherein the capping layer includes at least two layers.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: April 2, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Choong Man Lee, Yong Min Yoo, Young Jae Kim, Seung Ju Chun, Sun Ja Kim
  • Publication number: 20190081072
    Abstract: A method of processing a substrate by omitting a photolithographic process is disclosed. The method includes forming at least one layer on a stepped structure having an upper surface, a lower surface, and a side surface that connects the upper surface to the lower surface, selectively densifying portions of the at least one layer respectively on the upper surface and the lower surface via asymmetric plasma application, and performing an isotropic etching process on the at least one layer. During the isotropic etching process, the portion of the at least one layer formed on the upper surface is separated from the portion of the at least one layer formed on the lower surface.
    Type: Application
    Filed: November 13, 2018
    Publication date: March 14, 2019
    Inventors: Seung Ju Chun, Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim, Yoon Ki Min, Hae Jin Lee, Tae Hee Yoo
  • Publication number: 20190035810
    Abstract: A method of processing a substrate by omitting a photolithographic process is disclosed. The method includes forming at least one layer on a stepped structure having an upper surface, a lower surface, and a side surface that connects the upper surface to the lower surface, selectively densifying portions of the at least one layer respectively on the upper surface and the lower surface via asymmetric plasma application, and performing an isotropic etching process on the at least one layer. During the isotropic etching process, the portion of the at least one layer formed on the upper surface is separated from the portion of the at least one layer formed on the lower surface.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 31, 2019
    Inventors: Seung Ju Chun, Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim, Yoon Ki Min, Hae Jin Lee, Tae Hee Yoo
  • Publication number: 20180350587
    Abstract: Methods for depositing oxide thin films, such as metal oxide, metal silicates, silicon oxycarbide (SiOC) and silicon oxycarbonitride (SiOCN) thin films, on a substrate in a reaction space are provided. The methods can include at least one plasma enhanced atomic layer deposition (PEALD) cycle including alternately and sequentially contacting the substrate with a first reactant that comprises oxygen and a component of the oxide, and a second reactant comprising reactive species that does not include oxygen species. In some embodiments the plasma power used to generate the reactive species can be selected from a range to achieve a desired step coverage or wet etch rate ratio (WERR) for films deposited on three dimensional features. In some embodiments oxide thin films are selectively deposited on a first surface of a substrate relative to a second surface, such as on a dielectric surface relative to a metal or metallic surface.
    Type: Application
    Filed: May 4, 2018
    Publication date: December 6, 2018
    Inventors: Lingyun Jia, Viljami J. Pore, Marko Tuominen, Sun Ja Kim, Oreste Madia, Eva Tois, Suvi Haukka, Toshiya Suzuki
  • Patent number: 10134757
    Abstract: A method of processing a substrate by omitting a photolithographic process is disclosed. The method includes forming at least one layer on a stepped structure having an upper surface, a lower surface, and a side surface that connects the upper surface to the lower surface, selectively densifying portions of the at least one layer respectively on the upper surface and the lower surface via asymmetric plasma application, and performing an isotropic etching process on the at least one layer. During the isotropic etching process, the portion of the at least one layer formed on the upper surface is separated from the portion of the at least one layer formed on the lower surface.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: November 20, 2018
    Assignee: ASM IP Holding B.V.
    Inventors: Seung Ju Chun, Yong Min Yoo, Jong Wan Choi, Young Jae Kim, Sun Ja Kim, Wan Gyu Lim, Yoon Ki Min, Hae Jin Lee, Tae Hee Yoo