Patents by Inventor Suresh C. Srivastava

Suresh C. Srivastava has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120109287
    Abstract: Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H2 evolution in H2SO4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H2SO4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.
    Type: Application
    Filed: December 22, 2011
    Publication date: May 3, 2012
    Inventors: Suresh C. Srivastava, Gilbert R. Gonzales, Radoslav Adzic, George E. Meinken
  • Publication number: 20120065386
    Abstract: This invention relates to novel method of synthesis of RNA utilizing N-2-acetyl protected guanine as nucleoside base, nucleosides, succinates, phosphoramidites, corresponding solid supports that are suitable for oligo deoxy nucleosides and RNA oligonucleotide synthesis. Our discovery using N-acetyl protected guanine as nucleoside base protecting group, which is significantly faster base labile protecting group, yet significantly more stable than commonly utilized -2-isobutyryl guanosine is a novel approach to obtain highest purity oligonucleotides. This approach is designed to lead to very high purity and very clean oligonucleotide, after efficient removal of the protecting groups, including acetyl group from guanine and to produce high purity therapeutic grade DNA oligonucleotides, RNA oligonucleotides, diagnostic DNA, diagnostic RNA for microarray platform.
    Type: Application
    Filed: May 19, 2010
    Publication date: March 15, 2012
    Inventors: Suresh C. Srivastava, Naveen P. Srivastava
  • Publication number: 20120058476
    Abstract: The invention provides a novel method of labeling oligonucleotides, with reporter moieties, including but not limited to, quenchers, fluorophores, biotin, digoxigenin, peptides and proteins. In addition, this invention provides a method of detecting hybridization of oligonucleotides. This invention also provides novel azo quenchers having the general formula shown below. The invention further provides compositions comprising labeled oligonucleotides and solid supports. The invention also provides kits comprising at least one composition of the present invention.
    Type: Application
    Filed: May 5, 2010
    Publication date: March 8, 2012
    Inventors: Andrei Laikhter, Suresh C. Srivastava, Naveen P. Srivastava
  • Patent number: 8114264
    Abstract: Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H2 evolution in H2SO4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H2SO4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: February 14, 2012
    Assignee: Brookhaven Science Associates
    Inventors: Suresh C. Srivastava, Gilbert R. Gonzales, Radoslav Adzic, George E. Meinken
  • Patent number: 8097064
    Abstract: The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: January 17, 2012
    Assignee: Brookhaven Science Associates
    Inventors: Elena V. Lapshina, Boris L. Zhuikov, Suresh C. Srivastava, Stanislav V. Ermolaev, Natalia R. Togaeva
  • Publication number: 20110216867
    Abstract: One embodiment of the present invention includes a process for production and recovery of no-carrier-added radioactive tin (NCA radiotin). An antimony target can be irradiated with a beam of accelerated particles forming NCA radiotin, followed by separation of the NCA radiotin from the irradiated target. The target is metallic Sb in a hermetically sealed shell. The shell can be graphite, molybdenum, or stainless steel. The irradiated target can be removed from the shell by chemical or mechanical means, and dissolved in an acidic solution. Sb can be removed from the dissolved irradiated target by extraction. NCA radiotin can be separated from the remaining Sb and other impurities using chromatography on silica gel sorbent. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.
    Type: Application
    Filed: December 21, 2007
    Publication date: September 8, 2011
    Inventors: Suresh C. Srivastava, Boris Leonidovich Zhuikov, Stanislav Victorovich Ermolaev, Nikolay Alexandrovich Konyakhin, Vladimir Mikhailovich Kokhanyuk, Stepan Vladimirovich Khamyanov, Natalya Roaldovna Togaeva
  • Publication number: 20110166380
    Abstract: The invention provides derivative compounds of N-6-trimethyl-L-lysine (TML) for potential treatment of disorders resulting from deficiencies in the TML-carnitine pathway. The invention also provides a method of purification of TML and TML derivative compounds. The treatment of conditions of the diseases late infantile neuronal ceroid lipofuscinosis (LINCL) and neuronal ceroid lipofuscinosis (NCL) with TML were shown in the original parent application.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Suresh C. Srivastava, Sant K. Srivastay, Stanley J. Szymanski, JR.
  • Publication number: 20110166231
    Abstract: The invention involves various embodiments of a method for treating a human being for a condition associated with (1) a clinical state of impairment of carnitine or carnitine esters, or decreased fatty acid metabolism, (2) low energy production or lower ATP production, (3) clinical hyperammonemia, and (4) clinically high pyruvate levels resulting from a deficiency in the biosynthesis of carnitine. The method involves administering a therapeutically effective salt of N-6-trimethyl-L-lysine.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Suresh C. Srivastava, Sant K. Srivastav, Stanley J. Szymanski, JR.
  • Publication number: 20110166230
    Abstract: The invention involves various embodiments of a method for treating a human being for a condition associated with (1) seizures, myoclonic seizures, epilepsy, refractory epilepsy, hyperkinetic movements or tremors of hands or feet, (2) a state of ataxia, (3) accumulation of neuronal autofluorescent storage bodies in lysosomes or neurons, or regression of motor development, and (4) low alertness, dementia or mental retardation. The method involves administering a therapeutically effective salt of N-6-trimethyl-L-lysine.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Suresh C. Srivastava, Sant K. Srivastav, Stanley J. Szymanski, JR.
  • Publication number: 20110166379
    Abstract: The invention provides a method of synthesis of N-6-trimethyl-L-lysine (TML) derivative compounds for potential treatment of disorders resulting from deficiencies in the TML-carnitine pathway. The invention also provides a method of purification of TML and TML derivative compounds. The treatment of conditions of the diseases late infantile neuronal ceroid lipofuscinosis (LINCL) and neuronal ceroid lipofuscinosis (NCL) with TML were shown in the original parent application.
    Type: Application
    Filed: March 9, 2011
    Publication date: July 7, 2011
    Inventors: Suresh C. Srivastava, Sant K. Srivastav, Stanley J. Szymanski, JR.
  • Publication number: 20110137010
    Abstract: The present invention provides building blocks and methods for synthesizing very pure RNA in a form that can efficiently be modified at the 3? end. Reverse RNA monomer phosphoramidites have been developed for RNA synthesis in 5??3? direction, leading to very clean oligo synthesis that allows for the introduction of various modifications at the 3?-end cleanly and efficiently. Higher coupling efficiency per step have been observed during automated oligo synthesis with the reverse RNA amidites disclosed herein, resulting in a greater ability to achieve higher purity and produce very long oligonucleotides. The use of the reverse RNA phosphoramidites in the synthetic process of this invention leads to oligonucleotides free of N+1 species.
    Type: Application
    Filed: February 19, 2010
    Publication date: June 9, 2011
    Applicant: ChemGenes Corporation
    Inventors: Suresh C. Srivastava, Naveen P. Srivastava
  • Patent number: 7956169
    Abstract: The invention provides a novel group of azo quencher compositions that are useful as quenchers of fluorescence and to methods for making and using them. The quenchers contain an azo bond and 1,3,3-trimethyl-2-methyleneindoline ring system. The quenchers can be derivatized to facilitate their conjugation to a variety of biologically relevant compounds, including lipids, nucleic acids, peptides, proteins, and the like.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 7, 2011
    Assignee: ChemGenes Corporation
    Inventors: Andrei Laikhter, Suresh C. Srivastava, Naveen P. Srivastava
  • Patent number: 7932287
    Abstract: The invention provides compositions for and methods of treating a number of disorders. In one embodiment, the invention provides a method of treating a wide range of conditions by administering to a human being in need of such treatment, a therapeutically effective amount of (a) N-6-trimethyl-L-lysine of at least 98% purity, (b) a prodrug thereof, (c) an aliphatic chain derivative thereof, (d) an ester derivative thereof, (e) an amide derivative thereof, or (f) a pharmaceutically acceptable salt of said N-6-trimethyl-L-lysine or said prodrug.
    Type: Grant
    Filed: April 13, 2005
    Date of Patent: April 26, 2011
    Assignees: ChemGenes Corporation
    Inventors: Suresh C. Srivastava, Sant K. Srivastav, Stanley J. Szymanski, Jr.
  • Publication number: 20110040082
    Abstract: This Divisional application of patent application Ser. No. 10/768,996, entitled “Novel Oligonucleotides And Related Compounds” discloses a class of chemical compounds which have been demonstrated to possess cancer fighting properties. The parent application disclosed oligonucleotides for selectively killing cancerous cells over noncancerous cells by incorporating and covalently linking antimetabolite prodrugs via CpG moieties, for the anitmetabolite Gemcitabine and other compounds with known cancer fighting properties. This application discloses modifications of Gemcitabine for incorporation into CpG oligonucleotides for improved biochemical and biological properties.
    Type: Application
    Filed: October 22, 2010
    Publication date: February 17, 2011
    Inventor: Suresh C. Srivastava
  • Publication number: 20110015382
    Abstract: This invention relates to synthesis of novel -N-FMOC protected nucleosides, succinates, phosphoramidites, corresponding solid supports that are suitable for oligo deoxy nucleosides and RNA oligonucleotide synthesis. Our discovery using N-FMOC as nucleoside base protecting group, which is highly base labile protecting group is a novel approach to obtain highest purity oligonucleotides. This approach is designed to lead to very high purity and very clean oligonucleotide, after efficient removal of the protecting groups and to produce high purity therapeutic grade DNA oligonucleotides, RNA oligonucleotides, diagnostic DNA, diagnostic RNA for microarray platform. The deprotection of FMOC protecting groups of the natural deoxy and ribonucleosides occurs under very mild deprotection conditions such as mild bases, secondary and tertiary amines for removal of such groups under such conditions would allows synthesis of various DNA and RNA of highest purity for diagnostics and therapeutic application.
    Type: Application
    Filed: November 30, 2009
    Publication date: January 20, 2011
    Applicant: ChemGenes Corporation
    Inventors: Suresh C. Srivastava, Naveen P. Srivastava
  • Publication number: 20100324278
    Abstract: The present invention relates to novel phosphoramidites, A-n-bz, C-n-bz, C-n-ac, G-n-ac and U are produced with an HPLC purity of greater than 98% and 31P NMR purity greater than 99%. A novel process of reverse 5??3? directed synthesis of RNA oligomers has been developed and disclosed. Using that method demonstrated high quality RNA synthesis with coupling efficiency approaching 99%.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 23, 2010
    Inventors: Suresh C. Srivastava, Divya Pandey, Satya P. Bajpai, Naveen P. Srivastava
  • Patent number: 7846436
    Abstract: The present invention relates generally to oligonucleotides and more specifically to oligonucleotides which have a sequence including at least two CpG dinucleotides and a prodrug of an antimetabolite. The prodrug can be part of a CpG dinucleotide or may be attached elsewhere on the oligonucleotide.
    Type: Grant
    Filed: January 30, 2004
    Date of Patent: December 7, 2010
    Assignees: ChemGenes Corporation
    Inventors: Suresh C. Srivastava, Satya K. Bajpai, Kwok-Hung Sit
  • Publication number: 20100137970
    Abstract: Methods for preparing an implant coated with a conversion electron emitting source (CEES) are disclosed. The typical method includes cleaning the surface of the implant; placing the implant in an activating solution comprising hydrochloric acid to activate the surface; reducing the surface by H2 evolution in H2SO4 solution; and placing the implant in an electroplating solution that includes ions of the CEES, HCl, H2SO4, and resorcinol, gelatin, or a combination thereof. Alternatively, before tin plating, a seed layer is formed on the surface. The electroplated CEES coating can be further protected and stabilized by annealing in a heated oven, by passivation, or by being covered with a protective film. The invention also relates to a holding device for holding an implant, wherein the device selectively prevents electrodeposition on the portions of the implant contacting the device.
    Type: Application
    Filed: June 6, 2007
    Publication date: June 3, 2010
    Inventors: Suresh C. Srivastava, Gilbert R. Gonzales, Radoslav Adzic, George E. Meinken
  • Publication number: 20100067638
    Abstract: The invention relates to nuclear technology, and to irradiation targets and their preparation. One embodiment of the present invention includes a method for preparation of a target containing intermetallic composition of antimony Ti—Sb, Al—Sb, Cu—Sb, or Ni—Sb in order to produce radionuclides (e.g., tin-117m) with a beam of accelerated particles. The intermetallic compounds of antimony can be welded by means of diffusion welding to a copper backing cooled during irradiation on the beam of accelerated particles. Another target can be encapsulated into a shell made of metallic niobium, stainless steel, nickel or titanium cooled outside by water during irradiation. Titanium shell can be plated outside by nickel to avoid interaction with the cooling water.
    Type: Application
    Filed: April 16, 2009
    Publication date: March 18, 2010
    Inventors: Boris L. Zhuikov, Nicolai A. Konyakhin, Vladimir M. Kokhanyuk, Suresh C. Srivastava
  • Publication number: 20100064853
    Abstract: The invention provides a method of chemical recovery of no-carrier-added radioactive tin (NCA radiotin) from intermetallide TiSb irradiated with accelerated charged particles. An irradiated sample of TiSb can be dissolved in acidic solutions. Antimony can be removed from the solution by extraction with dibutyl ether. Titanium in the form of peroxide can be separated from tin using chromatography on strong anion-exchange resin. In another embodiment NCA radiotin can be separated from iodide solution containing titanium by extraction with benzene, toluene or chloroform. NCA radiotin can be finally purified from the remaining antimony and other impurities using chromatography on silica gel. NCA tin-117m can be obtained from this process. NCA tin-117m can be used for labeling organic compounds and biological objects to be applied in medicine for imaging and therapy of various diseases.
    Type: Application
    Filed: April 16, 2009
    Publication date: March 18, 2010
    Inventors: Elena V. Lapshina, Boris L. Zhuikov, Suresh C. Srivastava, Stanislav V. Ermolaev, Natalia R. Togaeva