Patents by Inventor Susanne Madeline Lee

Susanne Madeline Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8208602
    Abstract: A system for producing at least one high flux photon beam is provided. The system includes two or more photon sources configured to produce photon beams, and at least one first stage optic device coupled to at least one of the photon sources and providing at least one focused photon beam through total internal reflection, wherein at least one of the photon beams and the focused photon beams are combined at a virtual focal spot.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: June 26, 2012
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Peter Michael Edic, Vanita Mani, Forrest Frank Hopkins, Eberhard Neuser
  • Publication number: 20120134465
    Abstract: A mammograph is provided. The mammograph includes a source of X-rays; a detector of X-rays, the source being configured to emit at least one beam of X-rays to the detector; and an optic control device configured to control the direction of X-rays emitted by the source such that the X-rays emitted.
    Type: Application
    Filed: November 18, 2011
    Publication date: May 31, 2012
    Inventors: Susanne Madeline Lee, Aurelle Boulder, Serge Louis Wilfrid Muller
  • Publication number: 20120051499
    Abstract: An X-ray imaging system that produces one or more fan-shaped beams is described. The system includes a target for emitting X rays that includes at least one target focal spot, and one or more graded multilayer optic devices in optical communication with the target. The optics transmits at least a portion of the source X rays to produce the one or more fan-shaped beams. The graded multilayer optic devices include at least a first graded multilayer section for redirecting and transmitting X rays through total internal reflection. The graded multilayer section includes a high-index layer of material having a first complex refractive index n1, a low-index layer of material having a second complex refractive index n2, and a grading zone disposed between the high-index and low-index layers of material. The grading zone includes a grading layer having a third complex refractive index n3 such that Re(n1)>Re(n2)>Re(n3).
    Type: Application
    Filed: August 30, 2010
    Publication date: March 1, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Susanne Madeline Lee, Peter Michael Edic, Forrest Frank Hopkins
  • Patent number: 8058621
    Abstract: A system to detect a plurality of elements is proposed. The system includes one or more X-ray sources for transmitting X-rays towards a sample and also includes plurality of photon detectors. An array of crystals are arranged in a curvature with appropriate geometry for receiving a plurality of photon energies emitted from the sample and focusing the photon energy on the plurality of detectors. The plurality of photon detectors are spatially arranged at Bragg angles corresponding to signature photon energies to detect the plurality of elements simultaneously.
    Type: Grant
    Filed: October 26, 2009
    Date of Patent: November 15, 2011
    Assignee: General Electric Company
    Inventors: Vamshi Krishna Reddy Kommareddy, Paul Joseph Martin, Saratchandra Shanmukh, Paul Burchell Glaser, Susanne Madeline Lee, Ramakrishna Rao, Manoharan Venugopal
  • Publication number: 20110206187
    Abstract: A system for producing at least one high flux photon beam is provided. The system includes two or more photon sources configured to produce photon beams, and at least one first stage optic device coupled to at least one of the photon sources and providing at least one focused photon beam through total internal reflection, wherein at least one of the photon beams and the focused photon beams are combined at a virtual focal spot.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Susanne Madeline Lee, Peter Michael Edic, Vanita Mani, Forrest Frank Hopkins, Eberhard Neuser
  • Publication number: 20110095190
    Abstract: A system to detect a plurality of elements is proposed. The system includes one or more X-ray sources for transmitting X-rays towards a sample and also includes plurality of photon detectors. An array of crystals are arranged in a curvature with appropriate geometry for receiving a plurality of photon energies emitted from the sample and focusing the photon energy on the plurality of detectors. The plurality of photon detectors are spatially arranged at Bragg angles corresponding to signature photon energies to detect the plurality of elements simultaneously.
    Type: Application
    Filed: October 26, 2009
    Publication date: April 28, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Vamshi Krishna Reddy Kommareddy, Paul Joseph Martin, Saratchandra Shanmukh, Paul Burchell Glaser, Susanne Madeline Lee, Ramakrishna Rao, Manoharan Venugopal
  • Publication number: 20100296171
    Abstract: An optic device includes a multilayer zone forming a redirection section for redirecting and transmitting photons through total internal reflection, each multilayer zone including a high index material having a first real refractive index n1 and a first absorption coefficient ?1, a low index material having a second real refractive index n2 and a second absorption coefficient ?2, and a grading zone disposed between the high index material and the low index material and including a grading layer having a third real refractive index n3 and a third absorption coefficient ?3, wherein n1>n3>n2.
    Type: Application
    Filed: May 20, 2009
    Publication date: November 25, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Susanne Madeline Lee, Peter Michael Edic
  • Patent number: 7742566
    Abstract: A multi-energy imaging system and method for selectively generating high-energy X-rays and low-energy X-ray beams are described. A pair of optic devices are used, one optic device being formed to emit high X-ray energies and the other optic device being formed to emit low X-ray energies. A selective filtering mechanism is used to filter the high X-ray energies from the low X-ray energies. The optic devices have at least a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other.
    Type: Grant
    Filed: December 7, 2007
    Date of Patent: June 22, 2010
    Assignee: General Electric Company
    Inventors: Forrest Frank Hopkins, Susanne Madeline Lee, Peter Michael Edic
  • Patent number: 7590220
    Abstract: An X-ray detection and inspection system is disclosed. The system includes an X-ray source configured to generate an interrogating X-ray beam, wherein the X-ray beam is directed towards a probe volume in a sample, one or more two-dimensional area detectors, wherein the one or more detectors are positioned at angles other than 90 degrees with respect to the direction of the interrogating beam and are configured to receive and detect non-circular conic sections of diffracted X rays from the probe volume, and an acquisition and analysis system configured to generate position and intensity data of the non-circular conic sections such that the corresponding mathematical equations of the conic sections could be generated, to identify one of a quasi-monochromatic or monochromatic XRD pattern from the non-circular conic sections, and to determine a position of the probe volume and at least two Bragg diffraction angles from said XRD pattern.
    Type: Grant
    Filed: March 10, 2008
    Date of Patent: September 15, 2009
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Peter Michael Edic
  • Publication number: 20090225944
    Abstract: An X-ray detection and inspection system is disclosed. The system includes an X-ray source configured to generate an interrogating X-ray beam, wherein the X-ray beam is directed towards a probe volume in a sample, one or more two-dimensional area detectors, wherein the one or more detectors are positioned at angles other than 90 degrees with respect to the direction of the interrogating beam and are configured to receive and detect non-circular conic sections of diffracted X rays from the probe volume, and an acquisition and analysis system configured to generate position and intensity data of the non-circular conic sections such that the corresponding mathematical equations of the conic sections could be generated, to identify one of a quasi-monochromatic or monochromatic XRD pattern from the non-circular conic sections, and to determine a position of the probe volume and at least two Bragg diffraction angles from said XRD pattern.
    Type: Application
    Filed: March 10, 2008
    Publication date: September 10, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Susanne Madeline Lee, Peter Michael Edic
  • Publication number: 20090147922
    Abstract: A multi-energy imaging system and method for selectively generating high-energy X-rays and low-energy X-ray beams are described. A pair of optic devices are used, one optic device being formed to emit high X-ray energies and the other optic device being formed to emit low X-ray energies. A selective filtering mechanism is used to filter the high X-ray energies from the low X-ray energies. The optic devices have at least a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other.
    Type: Application
    Filed: December 7, 2007
    Publication date: June 11, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Forrest Frank Hopkins, Susanne Madeline Lee, Peter Michael Edic
  • Patent number: 7508911
    Abstract: An X-ray imaging system is provided that includes a target for emitting X-rays and having at least one target focal spot, and an array of multilayer optic devices for transmitting X-rays through total internal reflection. The array of multilayer optics devices are in optical communication with the at least one target focal spot. Further, a method for imaging an object with an X-ray imaging machine is provided. Also, a method for forming a stack of multilayer optic devices is provided.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: March 24, 2009
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Forrest Frank Hopkins, Peter Michael Edic
  • Publication number: 20090074146
    Abstract: An X-ray imaging system is provided that includes a target for emitting X-rays and having at least one target focal spot, and an array of multilayer optic devices for transmitting X-rays through total internal reflection. The array of multilayer optics devices are in optical communication with the at least one target focal spot. Further, a method for imaging an object with an X-ray imaging machine is provided. Also, a method for forming a stack of multilayer optic devices is provided.
    Type: Application
    Filed: September 19, 2007
    Publication date: March 19, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Susanne Madeline Lee, Forrest Frank Hopkins, Peter Michael Edic
  • Publication number: 20090041198
    Abstract: Systems and methods for highly collimated and temporally variable X-ray beams. Disclosed herein is a system for producing a collimated X-ray beam, the system including one or more distributed electron sources configured to produce electron beams, one or more X-ray production targets configured to receive the electron beams and to generate X-ray beams at X-ray focal spots, X-ray optics configured to collect the X-ray beams from the X-ray focal spots, wherein the X-rays optics are configured to focus the X-ray beams to a single virtual focal spot, and an X-ray collimator configured to collimate the X-ray beams from the virtual focal spot to generate the collimated X-ray beam.
    Type: Application
    Filed: July 17, 2008
    Publication date: February 12, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: John Scott Price, Vanita Mani, Antonio Caiafa, Kristopher John Frutschy, Susanne Madeline Lee, Vasile Bogden Neculaes, Fred Sharifi, Yun Zou
  • Publication number: 20090010605
    Abstract: An optic device, system and method for making are described. The optic device includes a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other. The optic device may be fabricated by vapor depositing a first layer and then vapor depositing a second layer thereupon. The first layer may be deposited onto a blank or substrate. The blank or substrate may be rotated during deposition. Further, a computer-controlled shutter may be used to alter the deposition rate of material along an axis of the optic device. Alternatively, the optic device may be moved at varying speeds through a vapor stream to alter the deposition rate of material.
    Type: Application
    Filed: September 17, 2008
    Publication date: January 8, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SUSANNE MADELINE LEE, FORREST FRANK HOPKINS
  • Patent number: 7412131
    Abstract: An optic device, system and method for making are described. The optic device includes a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other. The optic device may be fabricated by vapor depositing a first layer and then vapor depositing a second layer thereupon. The first layer may be deposited onto a blank or substrate. The blank or substrate may be rotated during deposition. Further, a computer-controlled shutter may be used to alter the deposition rate of material along an axis of the optic device. Alternatively, the optic device may be moved at varying speeds through a vapor stream to alter the deposition rate of material.
    Type: Grant
    Filed: January 2, 2007
    Date of Patent: August 12, 2008
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Forrest Frank Hopkins
  • Publication number: 20080159484
    Abstract: An optic device, system and method for making are described. The optic device includes a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other. The optic device may be fabricated by vapor depositing a first layer and then vapor depositing a second layer thereupon. The first layer may be deposited onto a blank or substrate. The blank or substrate may be rotated during deposition. Further, a computer-controlled shutter may be used to alter the deposition rate of material along an axis of the optic device. Alternatively, the optic device may be moved at varying speeds through a vapor stream to alter the deposition rate of material.
    Type: Application
    Filed: January 2, 2007
    Publication date: July 3, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SUSANNE MADELINE LEE, FORREST FRANK HOPKINS
  • Publication number: 20080159707
    Abstract: An optic device, system and method for making are described. The optic device includes a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property. The first and second layers are conformal to each other. The optic device may be fabricated by vapor depositing a first layer and then vapor depositing a second layer thereupon. The first layer may be deposited onto a blank or substrate. The blank or substrate may be rotated during deposition. Further, a computer-controlled shutter may be used to alter the deposition rate of material along an axis of the optic device. Alternatively, the optic device may be moved at varying speeds through a vapor stream to alter the deposition rate of material.
    Type: Application
    Filed: October 9, 2007
    Publication date: July 3, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: SUSANNE MADELINE LEE, FORREST FRANK HOPKINS
  • Patent number: 7366374
    Abstract: An optic device, system and method for imaging are described. The optic device includes a first solid phase layer having a first index of refraction with a first photon transmission property and a second solid phase layer having a second index of refraction with a second photon transmission property, the solid phase layers being situated between an output face and a non-flat input face. The first and second layers are conformal to each other. The imaging system includes a source of electrons and a target, with an array of the optic devices coupled thereto to form limited cone beams of X-ray radiation.
    Type: Grant
    Filed: May 22, 2007
    Date of Patent: April 29, 2008
    Assignee: General Electric Company
    Inventors: Susanne Madeline Lee, Forrest Frank Hopkins, Peter Michael Edic, Joseph John Manak, William Eugene Powell, III